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ABSTRACT

This report discusses the theory, design, implementation and testing of a
personal computer-based Multi-Frequency Modulation (MFM) packet commu-
nications system. Transmitter/receiver programs provide software drivers for
DiA and A/D boards and perform symbol encoding, modulating, demodulating
and decoding. The design and construction of a polarity coincidence correlator for
receiver packet synchronization is presented. Experimental results show that the
implemented MFM communication system conforms to theoretical analysis with
acceptable bit error. Results also show that MFM can be uniquely adapted to a

specific channel.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research

may not have been exercised for all cases of interest. While every effort has been

made, within the time available, to ensure that the programs are free of compu-

tational and logic errors, they cannot be considered validated. Any application

of these programs without additional verification is at the risk of the user.

iv



TABLE OF CONTENTS

I. INTRODUCTION ........................................ 1

II. THEORY OF MULTI-FREQUENCY MODULATION .......... 2

A. PACKET CONSTRUCTION ............................. 2

B. SIGNAL GENERATION AND DEMODULATION ........... 4

C. PROPERTIES OF MFM ................................ 4

D. M ODULATION ...................................... 6

III. SYSTEM DEVELOPMENT .............................. 12

A. SYSTEM DESCRIPTION .............................. 12

B. BLOCK DESCRIPTION ............................... 12

I. Transm itter ...................................... 12

2. R eceiver ......................................... 13

3. Synchronization ................................... 14

IV. SYSTEM IMPLEMENTATION ........................... 16

A. SIGNAL PARAMETERS .............................. 16

B. SO FTW A RE ........................................ 17

1. Transm itter ...................................... 17

a. TRANSM IT .................................. 18

b. X M ITM ES ................................... 19

2. R eceiver ......................................... 20

a. RECEIVE .................................... 21

b. R ECM ES .................................... 22

C. HARDW ARE ....................................... 23

V. PERFORMANCE EVALUATION ......................... 25

A. SYSTEM FREQUENCY RESPONSE ..................... 25

V



B. SNR PERFORMANCE................................28

VI. CONCLUSIONS AND FURTHER STUDY ................... 32

APPENDIX A. DESIGN PARAMETERS....................... 33

APPENDIX B. OPERATING INSTRUCTIONS.................. 34

A. PRELIMINARIES .................................... 34

I. Hardware setup....................................34

a. System setup..................................34

b. DASH-1I6F switch setting:......................... 34

c. Trigger Requirements............................35

d. Power Supplies................................. 35

2. Software setup....................................35

a. Transmitter...................................35

b. Receiver.....................................36

B. MESSAGE TRANSMISSION PROCEDURE................ 36

APPENDIX C. TESTING PROCEDURES ...................... 37

A. RESPONSE TESTING PROCEDURE..................... 37

B. SNR TESTING PROCEDURE........................... 37

APPENDIX D. CORRELATOR SCHEMATIC................... 38

APPENDIX E. TRANSMIT.................................40-

APPENDIX F. XMITMES..................................51

APPENDIX G. DMAINIT..................................58

APPENDIX H. DMASTOP.................................. 59

vi



APPENDIXI1. RECEIVE...................................60

APPENDIX J. REGMES..........*.......................... 66

APPENDIX K. RESPONSE.................................72

APPENDIX L. STATISTICS.................................74

LIST OF REFERENCES.....................................81

INITIAL DISTRIBUTION LIST............................... 83



LIST OF TABLES

Table 1. STORAGE REQUIREMENTS AND PROCESSING TIME .. 15

Table 2. PHASE ERROR FROM A LINEAR CHANNEL .......... 17

Table 3. BIT ERRORS IN 2500 BITS TRANSMITTED VS BAUD TYPE

AND SNR ........................................ 31

Table 4. DESIGN PARAMETERS FOR A 1/15TH SECOND SIGNAL

PACKET IN A 16-20KHZ BANDPASS CHANNEL .......... 33

Table 5. SYNCHRONIZATION BAUD SYMBOL SEQUENCE ..... 36

vilI



LIST OF FIGURES

Figure 1. MFM Signal Packet (after Ref. 1: p. 3.) ................... 3
Figure 2. Data Structure (after Ref. 1: p. 9.) ...................... 5
Figure 3. Orthogonal tone spacing .............................. 7
Figure 4. ACF of a white bandpass sequence (after Ref. 1: p. 16.) ....... 8
Figure 5. QPSK signal constellation . ............................ 9

Figure 6. DQPSK encoding scheme ............................. 10
Figure 7. MFM Communication System ......................... 12

Figure 8. Transmitter Functional Block Diagram ................... 13

Figure 9. Receiver Functional Block Diagram . .................... 14

Figure 10. TRANSMIT algorithm .............................. 18
Figure 1-1. XMITMES algorithm ............................... 20

Figure 12. RECEIVE algorithm ................................ 21

Figure 13. Baud magnitude spectrum ............................ 22

Figure 14. RECM ES algorithm . ............................... 23
Figure 1-5. Polarity coincidence correlator ......................... 24

Figure 16. Initial system response ............................... 26
Figure 17. Improved system response ............................ 27

Figure 18. System response with 2-bit synchronization delay ............ 28

Figure 19. Maximum SNR output . .............. ............... 29
Figure 20. SNR performance .................................. 30

Figure 21. System interconnection diagram ........................ 34
Figure 22. Trigger specifications ................................ 35

Figure 23. Test equipment interconnection ......................... 37

ix



I. INTRODUCTION

Reliability and flexibility are two fundamental advantages of digital commu-

nications. They are achieved through the speed and processing power of digital

integrated circuits. Multi-Frequency Modulation (MFM) uniquely harnesses this

power found in the modern personal computer to encode, modulate, demodulate

and decode digitally formatted information, for sample rates currently up to

100,000 samples per second. With computer-to-computer communication links

implemented in a variety of mediums, such as wire, optical fiber, radio frequency,

or acoustic, MFM readily adapts to a given medium and can emulate most ex-

isting signal modulation formats.

The focus of this thesis is the implementation of a MFM packet communi-

cations system using industry standard personal computers (PC). Because of the

limited processing speed of the PC, modulation and demodulation of the packet

is performed in longer than real time. During the course of this project, trans-

mitter and receiver software were developed to process data for establishing a link

between PCs using D A and AID data acquisition boards. A correlator was de-

signed and constructed to synchronize the receiver to the transmitted packets us-

ing a synchronization baud at the beginning of the packets.

Analysis of the system phase response led to signal modifications which re-

sulted in improved signal quality. Signal-to-noise performance was-evaluated on

the system for various packet constructions. The scope of the report encompasses

the theory of MFM, a description of its specific development and implementa-

tion, and a summary of the evaluation of the system's performance.



II. THEORY OF MULTI-FREQUENCY MODULATION

A. PACKET CONSTRUCTION

The MFM signal set consists of "packets" of multiple tones which are ampli-

tude and,!or phase modulated. These tones are present simultaneously during a

subinterval of the packet known as a baud. Packets can be located arbitrarily in

the frequency spectrum and time as seen in Figure 1.

The follow definitions are used in MFM [Ref. 1: pp. 5-6]:

T: Packet length in seconds

AT: Baud length in seconds

k: Baud length in number of samples

01k: Symbol set. 0P1k is the phase of the kh tone in the Ph baud

L: Number of baud per packet

At: Time between samples in seconds

= l/At: Sampling or clock frequency for D,'A and A,'D conversion in Hz

Af- I/AT: Frequency spacing between tones

K: Number of MFM tones

To ensure the packet can be uniquely represented by the k, samples, the

Sampling Theorem states that f, the sampling frequency, must be greater then

twice the highest frequency in the signal set [Ref. 2: pp. 46-56]. Since f, = kAf

and Af is fixed by AT, the highest tone is k,/2 -1. Therefore, the signal set can

consist of an arbitrary selection of tones from dc to f,12 - Af.

The analog representation for the MFM signal during the /th baud is

k: /2

x1(t) = A lk cos(27rkAft + P1k), (l- 1)AT !_ t < IAT. (1)
k=O

The first baud begins at t = 0 and the last baud, L, ends at T = LAT. Sampling

x,(t) at t =nAt, where n is discrete time, and substituting Af- 1/AT and

At = AT/k,, produces a sampled output sequence of

2
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Figure 1. NIFM Signal Packet (after Ref. 1: p. 3.)

k,/2

x1(n) = Ak cos( 2irkn + 01k)) 0 k, (2)k=0 -- _, O 2

a digital signal sequence of length k, samples. The k, point Discrete Fourier

Transform (DFT) of x1(n) is

k,12

X,(k') = Z ' kxA l{e''1k5 (k' - k) + e-'IkA6(k' - (kx - k))}, 0 <: k' < kx -1.(3)
k=O

From (3), it can be seen that the upper half of X,(k') is the complex conjugate

image of the lower half, which is consistent with the symmetry-property of a real

sequence [Ref. 2: p. 402].

3



B. SIGNAL GENERATION AND DEMODULATION

In the past, generation of x1(t) was attempted by constructing multiple phase

lock loops, which were harmonically related. In December 1985, LCDR Deborah

E. DeFrank, then at NPS, designed a coherent multifrequency synthesizer as a

first step in producing x1(t) [Ref. 3]. This method proved to be difficult to im-

plement due to the phase jitter in the phase lock loops and changes required in

hardware in order to change the harmonic frequencies used in the tone set.

However, using the properties of DFT's, a baud of xj(n) can be generated by

the host transmit computer by luading :he first half of a complex valued array

(0 to k,2 -1) with the magnitude and phase of the tones to be included. To en-

sure x,(n) is real, the upper half, (k ,/2) to (c. - 1), is loaded with the complex

conjugate of the values in the first half of the array at the image harmonics. An

example of the DFT of a real x(n) having a period of k,= 16 and 3 tones is shown

in Figure 2. The Inverse Discrete Fourier Transform (IDFT) generates the real

discrete sequence, x,(n), which is clocked out of the computer thru a D;A con-

verter, at f, samples per second. A signal packet is generated by L repetitions of

the above process.

Demodulation of MFM is the inverse of the signal generation process. The

analog signal, x(t), is sampled atfx samples per second and converted to digital

format with an A:D converter. The sampled values are loaded into the real

components of a k point complex array, with the imaginary component set to

zero. A DFT is computed of the array to obtain the complex frequency repre-

sentation of the sampled input. Since Lhe upper half of the DFT is redundant

information, only the lower half is retained for further processing.

C. PROPERTIES OF MFM

Several important properties of MFM signals are presented in this section.

(1) Orthogonality of signal during a baud. In continuous time

AT2 k

CAT .,.,, f(I[2)AAT k = i
J0 "/k0 lc Ui (4)

4



k Re(X(k)) lm(X(k))
0 0 0
1 0 0
2 0 0
3 XR3 X13
4 XR4 X14
5 XR5 XI5
6 0 0
7 0 0
8 0 0
9 0 0
10 0 0
11 XR5 -XI5
12 XR4 -X14
13 XR3 -X13
14 0 0
15 0 0

Figure 2. Data Structure (after Ref. 1: p. 9.)

and in discrete time

n= k -1 (12)A'kx k i

Z Xk(IX(0) k (5)n=O k~

The derivation of the orthogonality of harmonically related signals is well known

[Ref. 4: pp. 152-154]. Two advantages of an orthogonal signal set are: l)the

noise, assuming additive white Gaussian noise(AWGN), affects each transmitted

tone independently, thus simplifying statistical computations, and 2)no tone in a

baud interferes with any of the other tones. This is shown by representing each

tone in (1), neglecting phase and magnitude, as

sk(t) = cos(2nkAft) rect(t/A7) (6)

where

(1{ 0 t AT

rect(t]AT) = 0o t AT (7)
otherwise



The Fourier transform of sk(t) is

Sk0') = ATsinc(f- kAJ)AT. (8)

The spectrum of three adjacent tones, plotted in Figure 3, shows the peak of each

tone coinciding with zero crossings of the spectrum of all other, thus minimizing

their mutual interference.

(2) Autocorrelation function (acf). Assuming x(n) is periodic,

the circular acf of (2) is

kx -1

rX(P) = Z x(n)x(n@p), 0 <_ p <_ kx -1 (9)
n=O

where ® is a left circular shift. For a white bandlimited sequence with an even

number of harmonics, the acf is given by

rx(p) = (l12)A x cos(2-nkop/kx) sin(irKp/kx) (10)

/2)A~k ~sin(irp/kx)

where k0 = (k-1 + k2)/2, the midband harmonic, and K = - k 2 + 1, the number

of tones in the baud. Figure 4 shows the acf of a bandpass sequence with

k., = 256, k, = 68 and k2 = 83(K = 16, k = 75.5). These signal parameters con-

form to those of the synchronization 'aud, which will be discussed later. Note the

peak of the acf occurs at p(O), this feature is fundamental to synchronizing the

receiver to the incoming packet.

(3) Matched filter. It is known that a matched filter maximizes

the signal-to-noise ratio for additive white noise [Ref. 4: pp. 88-89]. The DFT

of x(n) at the frequency k is identical to the output of a filter matched to xk(n).

This is due to the orthogonality property of the MFM signal and the linearity of

the DFT [Ref. 1: pp. 17-21].

D. MODULATION

Modulaiion is the process of encoding the source information onto a bandpass signal
with a canier fiequencyf. This bandpass signal is called the modulated signal s(t),
and the baseband source signal is called the modulating signal m(t) [Ref. 5: p. 2041.

6
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Figure 3. Orthogonal tone spacing.

The MFM signal can uniquely accomplish modulation in a number of ways.

The signal x1(n), as defined in-(2), can be modulated in amplitude, frequency, and

phase, by translating the message into changes in Ak, k and 01k respectively. Note,

any combination of the modulation types is also possible, such as changing am-

plitude and phase to produce quadrature amplitude modulation (QAM). The

signal, s(t), is called a bandpass signal. However, MFM can be bandpass or

baseband and through multiplication with a carrier frequency x(n) can be trans-

lated to any frequency band desired. The signal sets considered in this thesis are

bandpass and modulated using quadrature phase shift keying (QPSK) and dif-

ferential quadrature pha'e shift keyin, (DQPSK).

7
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Figure 4. ACF-of a white bandpass sequence (after Ref. 1: p. 16.)

(1) QPSK. Conventional QPSK converts a digital input into

four modulation voltage levels(symbols) to-determine the phase of the transmitter

output. To minimize the probability of symbol error the phases are spaced- at

multiples of ne/2 . A plot of the-complex envelope of one tone of x1(n) is shown in

Figure 5. The angle 0 can take on the values of ± n/4 and _+ 3n/4.

Encoding MFM with QPSK is accomplished by loading the

complex frequency domain array with the appropriate phase information. For

example, if the digital input is '0110...'. The first symbol, '01', would be loaded

into the frequency bin, k, as Re[XY(k)] = -Aklj/- and Im[X(k)]-= AIj, where
Ak c tP ~nltitleOftone . it wi,,ce,, the-s,,ond symbol '10' ,,o,,ld be- loaded

into the second bin, k + 1, as Re[X(k + 1)] = -A,+1J2 and

CD8



I magi nary
(quadrature)

0 1' 00'• |I ....

______________Real

xi (in phase)
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Figure 5. QPSK signal constellation.

Im[X(k + 1)] = A+,/,/2. This would continue until all the tones in the baud were

filled or there were no more symbols. As mentioned earlier, the discrete time do-

main signal is produced by taking the IDFT of the complex frequency array.

Each successive baud is encoded similarly.

Decoding QPSK directly into bits is accomplished easily as fol-

lows. Assuming a coherent receiver, decoding requires evaluating the polarity of

the real and imaginary components of each frequency bin. Notice in Figure 5

that the symbol mapping uses Gray encoding. This reduces the probability of

bit error because errors caused by AWGN are likely to occur when the adjacent

symbol is selected for the transmitted symbol; thus, the symbol error will contain

only one bit error. Gray encoding also allows decoding straight into bits, with the

right bit determined by the polarity of the real component and the left bit by the

polarity of the imaginary component. The digital signal is obtained by succes-

sively decoding each tone of each baud.

(2) DQPSK. QPSK requires strict phase coherent regeneration

of the sampling frequency to eliminate phase ambiguity. This results in a complex

synchronization design dr distribution of the sampling clock frequency to each

receiver. DQPSK provides a practical solution to the phase uncertainty problem

9
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1000 00 01

Figure 6. DQPSK encoding scheme.

but at a cost of approximately 2.3 dB more in SNR in order to obtain the same

probability of bit error as coherent QPSK [Ref. 6: p. 442]. Encoding MFM with

DQPSK is similar to QPSK; however, DQPSK translates the original symbol set

into a second "differential" symbol set, which is then encoded as QPSK. Trans-

lated symbols are generated based on the input symbol and the previous trans-

lated symbol. Figure 6 shows this translation. Notice that, regardless of the

previous symbol, an input of '00' generates a new symbol in the same quadrant

as the previous symbol. 'An input of '01' rotates the new symbol + n/2 radians

from the previous, '11' rotates 7r radians, and '10' rotates - 7r/2. In the receiver,

10



decoding is performed by determining the phase difference between successive

pairs of tones, using complex arithmetic. The phase difference, AO, is found from

d" =d,(d -,)' d , e-joi-I = eVOIj' - I)-' ,  )

and in the absence of noise will be 0, ± 7/2, or iz radians. To realign the complex

signal to the original constellations, ej' is rotated by + r14 radians and the in-

phase and quadrature components are decoded as with QPSK.

11



111. SYSTEM DEVELOPMENT

Multi-Frequency Modulation joins the basic methods of digital communi-

cations theory and signal processing. The theory behind MFM is not new [Ref.

7], however, the ability to implement it inexpensively is linked to the recent de-

velopment of inexpensive DSP chips for personal computers. The advent of

packet switching in data communications also makes MFM a preferred choice for

the MODEM because of its "packet" like format.

A. SYSTEM DESCRIPTION

An MFM communications system is shown in Figure 7. Information, de-

noted by m(n), is modulated into a frequency band that will propagate over the

available channel. The receiver converts the noise-corrupted signal, r(t), to an

estimate of the source information, t z(n). Theoretically, re(n) is any signal that

can be represented in a digital fbrmat. To be practically useful, the conversion

process must be real time. However, due to signal conversion speeds available for

this research project, the input information had to be restricted to stored data

files. The ideal transmitter output, x(t), is described for the 11h baud by (1).

n(t)

Information Xtrt)mn
re(n)

Figure 7. MFM Connmunication System.

B. BLOCK DESCRIPTION

1. Transnitter

The transmitter is subdivided into functional blocks, shown in Figure 8.

As mentioned above, m(n) has been digitized and stored in a file. Therefore, the

input is a string of binary digits. Processing is performed on a baud-by-baud

12



Packet Data Analog
Diit Encoder IDFT Storage Transfer

inout

I I

---- --- ontroller --------.j ...........--

Figure 8. Transmnitter Functional Block Diagram.

basis, until the end of the data file, or maximum packet length has been obtained,
whichever comes first.

The encoder converts input symbols into complex values stored in the

-frequency domain array. The value of the symbols depends on the type of mod-

ulation. For example, QPSK symbols are two bits long and are encoded as pre-

viously discussed. The discrete signal, produced by computing the IDFT of the

complex-valued frequency domain array, is loaded into the packet storage area.

The controller determines the parameters of the packet based on the modulation

type, baud, and message size; it then sequences the input data through the

transmitter one baud at a time. Once the message has been processed, the entire

stored digital signal, x(n), is transferred out at the selected rate, f samples per

second, through a DiA converter. Depending on the channel's fr'equency re-

sponse, filtering of the output may be desired to remove the high frequency am-
plitude discontinuities introduced by the D/A converter.

2. Receiver

The receiver, shown in Figure 9, demodulates the MFM signal by re-

versing the transmitter process. Data acquisition is the process that samples the

analog signal at f, samples per second and converts it to digital format with an

AiD converter. Though Inot shown in Figure 9, filtering of the input is recom-

mended to bandlimit input noise and to reject out-of-band interference. The

converted data sequence is stored until all data is acquired. Again, this is due to

13
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time limitations in the signal processing algorithms available in the system used

in this research task. The stored real values are accessed one baud at a time to-

perform a k- point DFT. The first half of the resulting complex values are de-

coded to obtain the amplitude and phase modulation information. As in the

transmitter, the controller sequences the data through the system.

Analog Deta Date DIgital
in Acquisition storage DFT Decode out

------- Controller ---------

Figure 9. Receiver Functional Block Diagram.

Notice the delay from input to output is the tine it takes to acquire the

entire packet and process the first baud. In contrast, real time processing must

complete the k, point DFT in the same or less time than it takes to fill up one

baud length buffer. Processing can alternate between buffers, and data will flow

continuously through the system at the sampling rate. The storage requirements

and processing time using f, = 61440 Hz, L =30, and k, = 1024 samples are given

in Table 1 for a system with a real time and non-real time DFT capability and

for the non-real time system used in this research. The AT implementation

processing time highlights the need for a high speed vector processor to perform

the DFT computations.

3. Synchronization

In digital communications, various degrees of synchronization are re-

quired. Typical degrees are:

* Carrier synchronization,

* BiL or symbol synchronization,

* Word or frame synchronization.

14



Tabit 1. STORAGE REQUIREMENTS AND PROCESSING TIME

Real time Non real time AT implementa-
tion

Storage required 2048 30720 30720
(# of samples)

Time required for
processing 1024 <16.7 > 16.7 10 X 103
samples (msec)

These have slightly different meanings and forms depending on the system. For

the MFM system, carrier and frame synchronization may be required.

Carrier synchronization is required if the modulation scheme is coherent,

such as QPSK. This means generating anf, at the receiver in frequency and phase

coherence with the transmitted f,. Though the packet does not contain the f"

harmonic, every tone is harmonically related to it. The packet can be constructed

to have a pilot tone separated from the modulation tones from which f, can be

derived. For example, the modulation tones could range from k, to kfj, giving a

band ofj + I consecutive tones. The pilot tone, kP, would then be placed several

tones away to ensure minimum band interference from the message during its

extraction.

As mentioned previously, MFM, as implemented, is in the form of a

transmission packet. To acquire the packet the receiver must know when to start

sampling. This is accomplished by frame synchronization. Typically, unique

words are inserted to mark the start of each frame. In MFM, the unique word is

called a "synchronization baud", and it is added at the beginning of each packet.

This baud is generated similarly to other bauds, except the tones and phases are

predetermined. Acquisition of the received signal starts after successful detection

of the synchronization baud. [Ref. 5: pp. 511-512, 8: pp. 293-295]

15



IV. SYSTEM IMPLEMENTATION

In the previous chapters the tools and framework for developing MFM

packet signals were established. One actual realization of this form of communi-

cations will now be presented. Though the IBM Personal Computer (PC) was

used, MFM can be implemented in a variety of ways. The PC, however, is ide-

ally suited for MFM implementation for the following reasons:

* Increased IO channel maximum throughput rate of approximately
100 KHz using direct memory access (DMA).

* Digital signal processing allows encoding, decoding, modulation, demodu-
lation, and channel equalization.

* Signal processing algorithms are available in high level languages.

* Packet construction is easily modified to conform to various channels.

* External hardware is easily interfaced.

* Cost is low.

Successful data acquisition and decoding of (1) was the first and most im-

portant goal of this thesis. Other goals affecting software and hardware develop-

ment were the following:

* Maximize packet size.

* Develop synchronization circuitry.

* Transmit;receive ASCII files.

* Develop software for testability and flexibility.

* Develop software for statistical testing.

A. SIGNAL PARAMETERS

Software and hardware implementations can be easily modified to receive any

packet construction. However, all software conforms to the signal parameters in

Appendix A, established between NPS and NOSC for an acoustic application.

This is a bandpass signal in the band from 16-20 KHz using a clock rate of

61440 Hz. All baud lengths are powers of two, allowing utilization of
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hardware/software Fast Fourier Transform (FFT) algorithms to speed frequency

transformation processing.

Various baud sizes are available to give greater flexibility in adapting the

packet to test specific channel parameters. In DQPSK, where the information is

represented by the phase difference between adjacent tones, channel phase dis-

tortion affects the shorter baud more, due to their larger Af The maximum

tone-to-tone phase error introduced by a linear phase channel is shown in

Table 2.

Table 2. PHASE ERROR FROM A LINEAR CHANNEL

ICX 256 512 1024 2048 4096

Af (Hz) 240 120 60 30 15

Phase error 25.6 12.8 6.4 3.2 1.6
(degrees)

Obviously the longer baud would be preferred when differential coding is between

adjacent tones. However, if the channel introduces time-related distortion, like

noise bursts. electrical glitches, or propagation fluctuations, a short duration baud

is desired, and differential coding should be between the same tones on adjacent

bauds.

B. SOFTWARE

1. Transmitter

Generation of the MFM signal has been accomplished in previous re-

search at NPS. Utilizing previous hardware and core software, this project ex-

panded the transmitter software to provide encoding of 16-QAM and QPSK,

encoded data files using DQPSK, constructed maximum size packets, generated

a synchronization baud, and provided greater flexibility in initializing the DMA.

Actual transmitter hardware will not be discussed; it has been the subject of
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previous research [Ref. 9]. Two new transmitter programs, TRANSMIT and

XMITMES, will be discussed.

a. TRANSMIT

The program TRANSMIT provides maximum flexibility in con-

structing and encoding signal packets. It is an excellent tool for basic system

testing and can be used as a training aid to demonstrate various digital modu-

lation schemes. A procedural flow diagram of TRANSMIT is shown in

Figure 10. SelectBaud is a user interactive procedure for establishing the pa-

rameters of a 16-20 KHz packet and for choosing the encoding scheme to be

utilized. Parameters k, and L are selected. From k , the lower and upper

bandlimits, k, and k2, are set. This generates a bandlimited packet with

k2 - k, + 1 tones. The data storage requirement is kL, representing the total

number of samples in the packet which are clocked out. The encoding scheme

determines the path for encoding the complex frequency domain array.

ScaleBaud -4ComplexFFT -4ScaleDa~ 1T L DMAINIT4I Encod"QtM

Figure 10. TRANSMIT algorit mI.

EncodeQPSK begins by displaying a four symbol QPSK constellation

used as a reference in selecting the symbols over the band. The symbols for the

K tones in the baud can be selected in a variety ways:

* Symbols for all tones are randomly selected from a random generator.

* The symbol for each tone is selected by the user.

* Individual tones may be removed from the band.
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This last feature allows construction of a baud with an arbitrary number of tones

within the band determined by k, and k2. Selected symbols for the band are

loaded into the complex frequency domain array with their complex conjugate

image frequency. EncodeQAM is functionally the same as EncodeQPSK, except

the symbols conform to a 16-QAM constellation [Ref. 1: p.27].

To obtain the real discrete time-domain sequence of the encoded

baud, ComplexFFT computes the inverse FFT. ComplexFFT consumes the ma-

jority of the processing time in the program due to the complex arithmetic oper-

ations required, thus restricting the overall throughput of the system. For real

time processing, the FFT algorithm must be accomplished by a hardware signal

processor.

Each value in the time domain sequence is represented as a real data

type, occupying six bytes of memory. ScaleData converts these values down to a

one byte format acceptable to the D,'A converter and places them into a packet

storage buffer. EncodeQPSK, ComplexFFT, and ScaleData are executed for

each baud, until all L baud have been processed. To transmit the packet out of

the computer, DMAINIT transfers samples at f, samples per second over the

DMA channel to D,A converter [Ref. 9,10].

b. XMITMES

To demonstrate the suitability of MFM for transferring information

from a source to a sink, the program XMITMES was written to transmit an

ASCII file encoded using DQPSK. Affixed to the beginning of the packet is a
synchronization baud. As shown in Figure 11, XMITMES has an even simpler

structure then TRANSMIT, because all tones in the band are encoded using

DQPSK.

The synchronization baud is a predetermined sequence gnerated by

SyncBaud. This baud is constructed as are all other baud, except k., is fixed at

256, and tones 68 to 83 are encoded with the same random symbol pattern re-

gardless of the packet construction or input message. This synchronization se-

quence occupies the first 256 values in the packet buffer and therefore is the first

to be clocked out of the computer.
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SyncBaud

SelectBaud
Message file

HailorPacket -DiffEncode CompexFFT ScaleData 1 = L DMAINIT out

Figure 11. XMITMES algorithm.

As messages can be of various sizes, TailorPacket sets the maximum

number of baud required for encoding. This is determined by dividing the num-

ber of characters in the message by the number of characters that can be en-

coded.

DiffEncode encodes the message file into the complex frequency do-

main array. It reads one character at a time; then breaks the eight bit character

into four 2-bit symbols. The symbols are DQPSK encoded and stored in the

frequency array. Once encoded, processing and signal output by ComplexFgT,

ScaleData, and DMAINIT are the same as in TRANSMIT.

2. Receiver

Like the transmitter, the receiver requires hardware to interface Lhe com-

puter with the channel and processing software to demodulate the MFM signal

packet. The channel interface is a high-speed data acquisition board, model

DASH-16F, manufactured by MetraByte Corporation [Ref. 11]. Also at the re-

ceiver, synchronization circuitry is required to detect the beginning of the packet.

The synchronization circuitry is discussed in Section C. Implementation of the

processing software assumes synchronization and a receiver f tile same as at the

transmitter. Two receiver programs, RECEIVE and RECMES will be discussed.
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a. RECEIVE

The program RECEIVE, shown in Figure 12, processes and displays

only the first baud of a packet. It is an excellent tool to experiment with the

DASH-16F's software drivers and it provides a quick indication of the overall

system performance. Two procedures are available for data input, GetData and

AcquireData. GetData reads in the time domain sequence file generated in the

transmitter, eliminating all data acquisition "hardware in the transmitter and re-

ceiver; thus ensuring perfect synchronization and accurate evaluation of all en-

coding, decoding, and processing software. The computational SNR of the system

is determined under this condition, as the only noise present is from round off

and truncation errors introduced in processing.

AcquireDaa

-4 CornplexFFT -- DiffDecode (raphData

GrDaa

Figure 12. RECEIVE algorithm.

Analog data acquisition is performed by the procedure Acquiredata.

It initializes and controls the DASH-16F using procedures written by Quinn-

Curtis [Ref. 12]. AcquireData allocates memory to store the sampled values

transferred from the board using the DMA controller. Direct Memory Access is

the only data transfer mode capable of transferring data to memory at the re-

quired f, without disruption by other interrupt processes in the computer. Other

important initialization parameters are triggering source and the number of sam-

ples to be collected.The AiD may be triggered from two sources, a programmable
interval timer or an ext'rnal trigger source. The programmable interval timer

divides either a 1 MHz or 10 MHz clock to derive the sampling rate of the trig-
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ger. Since this method cannot produce an arbitraryf,, external triggering is used.

After initialization, conversions take place on the positive transition of every

trigger until the specified number of samples have been acquired and transferred

to memory. Collected data is then converted into a format acceptable for further

processing.

DiffDecode determines the encoded symbols by differentially decod-

ing the complex frequency array transformed from the sampled data by

ComplexFFT. The output of the program is the frequency spectrum plot in Fig-

ure 13. The lower plot is the spectral response of the k,/2 tones in the baud; the

upper plot represents only tones from k, to k2 . The color on the original display

indicates the phase quadrant of a given tone. Graphing the data in this fashion

provides quick qualitative analysis of the frequencies and their phase informa-

tion.

Figure 13. Baud magnitude spectrum.

b. RECMES

RECMES, shown in Figure !4, demodulates the ASCII cncoded

transmission produced by XMITMES. It differs from RECEIVE in that it can
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PacketSe~pI

N

Figure 14. RECMES algorithm.

process a multiple baud packet. The user interactive procedure, PacketSetUp,

tailors processing to the expected receive packet, using the inputs k., and L.

AcquireData samples and stores a memory segment of data regardless of the

packet size, Lk,. However, once stored, ConvertData, ComplexFFT, and

DiffDecode process only L baud of the data. DiffDecode combines four

differentially decoded symbols into one byte, reprcsenting the ordinal number of

an ASCII character. To reconstruct the message, the characters are transferred

to text file MESSAGE.DAT until processing is complete. For convenience,

Show~lessage displays the recovered message.

C. HARDWARE

Synchronization of DQPSK MFM is obtained from a hardware correlator

that is external to the host receiver computer. The 128 point correlator, illus-

trated in Figure 15, provides the data acquisition board with sampling triggers

synchronized with respect to time of arrival of the packet. Using only the polarity

of the analog input, it functions as a matched filter to the last half of the 256

point synchronization baud. This type of correlator is referred to as a polarity

coincidence corrclator(PCC).

The hard limiter used to obtain the polarity information in the analog input

is a fast, high precision, high gain, operational amplifier. During positive and

negative portions of the input the output is +5 Vdc and 0 Vdc respectively.

This unipolar signal is synchronized to the receiver's f as it is clocked through a

128 point serial shift register. To minimize bit instability, due to the shift register

input being asynchronous to f, the hard limiter slew rate should be as large as
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Figure 15. Polarity coincidence correlator.

possible. For example, during testing,'.15 bits out of 128 were unstable using an

MC1747 general purpose operational amplifier with a slew rate of 0.7 V/psec.

This was reduced to 2 bits using the faster LM318 with a slew rate- of

70 V/psec.

The 1's and O's buses store the time-reversed polarity sequence of the syn-

chronization baud. The voltage on the buses represent the correlation between the

stored sequence and the sequence in the shift register. As the sequences come into

alignment, the 1's bus voltage increases while the O's decreases. This inverse

property is combined by a differential amplifier to give the total correlation.

When both sequences match, the l's bus voltage is +5 Vdc and the O's is0 Vdc,

giving a maximum differential voltage of 5 Vdc into the threshold detector. The

threshold detector generates a synchronization trigger on detection of the corre-

lation peak. A latch is set, enabling the D flip-flop to pass sampling triggers for

data acquisition at the packet's beginning as required for demodulation.

During design and testing the correlator progressed from a 16 to 128 point

shift register. With each shift register output bus connected through a resistor

voltage divider network, progressive testing was necessary to ensure power sup-

ply current ratings were not exceeded. Maximal-length sequences were used as

test correlation sequences due to their unique two-valued autocorrelation func-

tions that are easily determined by finite-field arithmetic [Ref. 8: pp. 368-375].
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V. PERFORMANCE EVALUATION

Initial testing of the MFM system was concerned with quickly determining

the quality of the demodulated signals. Figure 13 provided an excellent repre-

sentation of the demodulated and decoded signal and was used throughout sys-
tem development. This plot uniquely displays the frequency domain magnitude

and phase. Since QPSK symbols are at least 90 degrees apart each color (on the

original display) represents a specific quadrant in the complex frequency plot. For

example. a green line indicates a tone whose phase is in the second quadrant and

whose magnitude is represented by the length of the line. Although each color
represents a broad decision region in phase, it is still clear a phase shift of at least

180 degrees occurs across the 4 KHz band. This shift is primarily due to the linear

phase Butterworth filter used to simulate the system channel, and it contributed

to the decision to develop a DQPSK encoded signal.

A. SYSTEM FREQUENCY RESPONSE

After development of all hardware and software, testing revealed significant

phase fluctuations across the frequency band. The system phase response, plotted

in Figure 16, was determined by subtracting the transmitted phase from the re-

ceived phase for each tone. Ideally the response should be smooth. With

DQPSK encoded from tone-to-tone, phase differences introduced by the system

will result in reduced tolerance to additive noise. For example, notice the phase

difference of 0.4 radians between tones 296 and 297. When noise is added, de-

coding the symbol in error will occur at a lower noise level than it would if the

phase difference was zero; thus a higher SNR is required for low error rate de-

coding when the channel introduces tone-to-tone phase fluctuations. The tone-

to-tone phase fluctuations were substantially reduced, as shown in Figure 17, by

decreasing the magnitude of the encoded tones in the transmitter which moved

the operating range of the DiA converter to a more linear region. Further anal-

ysis of the effect of the D/A and A/D converters on phase shift is recommended

in order to be able to specify them properly in future designs.
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Figure 16. Initial system response.

A second important feature of the system phase response is its average slope

across the band. The phase slope is affected by synchronizatiu, timing as shown

in Figure 18. When the sequence through the correlator was delayed 2 bits, or

2/61440=32.55 psecs, relative to the analog input to the receiver, thus delaying

data acquisition accordingly, the phase slope changes as predicted by the time

delay Fourier transform theorem;

X(t - Td) W-- @eiwd (1-2)

This shows the phase slope in radians for a signal delayed by Td seconds, is 2lrTd

radians/Hz. For 'example, at f = /k = (60)(300) = 18000 -lz and
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Td = 32.55 psecs, the phase shift is 3.7 radians. This compares closely to the ac-

tual phase shift of tone 300 in Figure 17 and Figure 18.

In summary, system frequency response analysis identified phase shifts in-

troduced by the system hardware and by the synchronization timing. The mag-

nitude of the encoded tones and the synchronization sequence delay were selected

experimentally in order to minimize tone-to-tone phase fluctuations and provide

the comparatively flat response shown in Figure 18 for all subsequent testing.
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Figure 18. System response with 2-bit synchronization delay.

B. SNR PERFORMANCE

The performance of the system when corrupted by additive noise is deter-

mined by its output signal-to-noise ratio (SNR). For QPSK-encoded MFM the

mean of the real and imaginary parts of the 2K coefficients of the DFT represent

the received signal amplitude, and their variance represents the noise-power. The

output SNR is defined as the ratio of the square of the mean to the variance of

each for these 2K coefficients [Ref. 1: p. 25].

Figure 19 shows the system SNR, which is the output SNR when there is no

additive noise in the channel, versus the frequency spacing, Af, of the five baud

types. As would be expected, DQPSK performs better with a smaller Af because

the phase difference between adjacent tones is smaller when Af is smaller.
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In Figure 20, the SNR out of the receiver is shown versus input SNR which

was varied by adding noise to the analog signal. Theoretically, the output SNR

should equal the narrowband input SNR in QPSK [Ref. 1: pp. 24-25]. Thle re-

duction in output SNR at higher input SNRs is due to each baud approaching

its maximum output SNR as set by system noise and shown in Figure 19.

Table 3 lists the bit errors at various SNR input levels. There were approxi-

mately 2500 bits transmitted for each entry. This clearly indicates the worsening

effect of the channel on bauds with greater tone spacing Af at high OSNRs.

A direct comparison of the MFM signal with commercial modems is difficult

due to the wide variety 'of techniques that are used to achieve high-speed data

transfer. Howvever, with a bandwidth-efficiency of 2 bits/s/liz, a DQPSK MFM
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Figure 20. SNR performance.

signal can achieve a throughput of 6000 bits per second on a standard switched

telephone line having a bandwidth of 3 KHz. Though not implemented in this

project, several techniques could be utilized to increase the bandwidth efficiency,

such as increasing the constellation size and/or using data compression algorithms

as in commercial modems [Ref. 13, 14]. Using these techniques MFM could

achieve a bandwidth efficiency of 4-8 Bits/s/Hz, which compares favorably to

current high speed modems.
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Table 3. BIT ERRORS iN 2500 BITS TRANSMITTED VS BAUD TYPE AND
SNR.

Af kx SNR (dB)

5 10 15 20

240 256 165 35 18 10

120 512 154 16 3 0

60 1024 148 17 0 0

30 2048 140 9 0 0

15 4096 127 10 0 0
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VI. CONCLUSIONS AND FURTHER STUDY

MFM is well suited to the signal processing environment of the personal

computer. As implemented in this thesis, the packet signal provides a high speed,

low bit error data transfer link between two industry standard computers. Syn-

chronization hardware allows the link to use asynchronous data.

The theory and properties of MFM have been discussed for a white bandpass

packet signal. Packet construction and various modulation formats have been

shown to be easily adapted to a given channel. The system was developed and

implemented for testability and to be easily modified to accommodate a variety

of applications. However, the data storage requirements and signal conversion

speeds were unique to this project due to available hardware. As implemented,

this system would require a multiple packet transmission to achieve practical op-

eration.

Analysis of the system's phase response led to adjustments in the encoded

tone magnitudes and synchronization timing. This substantially improved the

system's phase response. SNR test results indicate a smaller Af baud has superior

performance in a linear phase channel. For Af less than 60 Hz, bit errors are

acceptably low for input SNRs greater than approximately 15 dB. Exhaustive

testing is required to compare bit error performance with coAitional digital

modulation schemes.

Areas of further study should focus toward increasing the system bandwidth

efficiency and implementation of hardware signal processing for real-time opera-

tion. In fact, current research at NPS is directed at increasing the throughput

speed of the system described. Improved bandwidth efficiency can be obtained

through data compression algorithms and developing receiver software to decode

the 16-QAM encoded signal generated by TRANSMIT. Finally to provide a

greater flexibility in adapting MFM to channels with significant uncompensated

phase distortion, the option should be developed to encode DQPSK on a baud-

to-baud basis.
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APPENDIX A. DESIGN PARAMETERS

Table 4. DESIGN PARAMETERS FOR A 1/15TH SECOND SIGNAL PACKET
IN A 16-20KHZ BANDPASS CHANNEL.

Baud length (sec) AT 1:240 1,120 1:60 1:30 1:15

No. of Bauds L 16 8 4 2 1

Tone spacing Af 240 120 60 30 15

Lowest Harmonic k, 68 135 269 537 1073

Lowest tone freq A 16320 16200 16140 16110 16095

Highest Harmonic k2 83 166 332 664 1328

IHighest tone freq f2 19920 19920 19920 19920 19920

Samples per Baud kx 256 512 1024 2048 4096

Sampling freq 61440 61440 61440 61440 61440
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APPENDIX B. OPERATING INSTRUCTIONS

A. PRELIMINARIES

1. Hardwvare setup
a. System setup

Setup system as shown in Figure 21. All signal/'trigger connections should

be accompanied with a ground lead to minimize interference.

r ibbon
cable

BoardTe rigger
Plsen eto core1to

N00 C Bo

yt h esizerlo

i~~~ ~ Pulse Generor Cre atorL

6666AA/AI

Synthesizerl

Figure 21. System interconuection diagram.

b. DASH'- 16F switch setting:

CHIAN CNFG ------------------------- 8

A!D --------------------- ----------- I -- 311)

DiMA----------------------------------1I
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GAIN (12.5v)-------------------------- dipswitch A, B--ON; C, D, USER--OFF

Address (300h) ------------------------ dipsxvitch 9,8--OFF; 7, 6, 5,4--ON

c. Trigger Requdrcinents
The D/A converter board uses negative logic as shown in Figure 22. The

pulse width, PW, mnust be less then one gsec to ensure proper signal output. This is due
to DMA request and acknowledge hardware. All hardwvare on the correlator and
DASH-16F7 is positive edge-triggered. The trigger magnitude should be approximnately
5.3V peak, due to CMOS shift register chips in the correlator.

transmi tter-

PW Ilisec

r-eceiver
PW -- var IablIe

&E t=1/6 1440 see

FE 0

Figure 22. Trigger specifications.

d. Power Supplies

+8Vdc supply -------------------------- 116216A 30v 50Onma (or suitable substitute)

-8V&c supply-------------------------- HP6216A 30v 5O0zna (or suitable substitute)

+5Vdc supply--------------------------HP6216A 30v SO0ma (or suitable substitute)

2. Softwsare setup

a. Transititer

I. Convert DMAINIT.ASM and DMASTOP.ASM to BINary files
[Ref. 15: pp. 91-931.b

2. Place files DMAINIT.I3IN, DMASTOP.BIN, COMPFFT.INC, and
FFT87B2.INC in the samne directory as TRANSMIT.PAS AND xmiTiMES.P"AS.
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3. Compile to disk TRANSMIT.PAS and XMITMES.PAS.

b. Receiver

1. Compile TP4DI6.PAS to disk to create TP4DI6.TPU.

2. Place TP4D16.TPU in the same directory as RECEIVE.PAS and RECMES.PAS.

3. Compile to disk RECEIVE.PAS and RECMES.PAS.

B. MESSAGE TRANSMISSION PROCEDURE

1. As necessary conduct preliminary equipment setup.

2. Reset correlator (removes triggers to DASH-16F).

3. Run XMITMES until "Ready to Transmit".

4. Run RECMES (match baud size used in XMITMES).

5. When receiver prompts "Ready to acquires", press enter key on transmitter.

6. Demodulated message is displayed on receiver screen and stored in file
MIESSAGE.DAT.

TRANSMIT and RECEIVE are similarly executed. However TRANSMIT would

require manual loading of the synchronization baud in Table 5 by individual loading

each tone with the appropriate symbol.

Table 5. SYNCHRONIZATION BAUD SYMBOL SEQUENCE

toie 68 69 70 71172 173 174175 176 177 178 179 180 181182 1831
symbol 3 3 2 2 4 1 2 1 2 3 4 3, 1 4 3 1
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APPENDIX C. TESTING PROCEDURES

A. RESPONSE TESTING PROCEDURE

1. Conduct preliminary equipment setup.

2. Run XMITMES and exit.

3. Transfer file XMITDAT.DAT to the receiver computer. (Not required for subse-
quent response testing if transmitted message and packet construction are un-
changed.)

4. Transmit message lAW message transmission procedure. (RECMES generates
output file RECSTAT.DAT used by RESPONSE and STATS.)

5. Run RESPONSE. (Ensure baud size is correctly edited into RESPONSE.)

6. Graph output file RESPbaud.DAT.

B. SNR TESTING PROCEDURE

1. Conduct preliminary equipment setup.

2. Add random noise source and true RMS. voltmeter as shown in Figure 23.
2.21<0

- 37

True
RMS

Random Voltfmeter

No ise
Generation

Figure 23. Test equipment interconnection.

3. Set SNR level.

4. Conduct steps 1-3 in the Response testing procedure.

5. Run Statistics (results are in file STAIbaud.DAT),
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APPENDIX D. CORRELATOR SCHEMATIC
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APPENDIX E. TRANSMIT

program TRANSMIT;
(*Transmits variable length packets up to 61440. The length is
determined by BCSTARRAY and can be take to a full segment of memory.
No sync baud is used. All external files are assumed to be in the same
directory*)

type
TNvector = array[0..4095] of real;
TNvectorPtr = ATNvector;
BCSTARRAY = array[-28673..32767] of byte; (*stores output samples*)

var
kx, (*baud size*)
kl, (*lowest tone in band*)
k2, (*highest tone in band*)
NUMBAUDS, (*number of bauds in packet*)
BAUDCOUNT, (*current baud being processed*)
BYTECOUNT, (*number of bytes to be transferred by DMA*)
I :integer;
XREAL, (*complex freq/time domain arrays*)
XIMAG :TNvectorPtr;
QAM, (*encoding scheme*)
INVERSE :boolean; (*direction of FFT*)
ERROR :byte; (*status of ComplexFFTD)
BCST :BCSTARRAY; (*packet storage buffer*)
THEFILE :file of byte;(*time sequence output file*)
ANSWER :char; (*input variable*)

(*$I FFT87B2.INC*)
(*$I COMPFFT. INC*)

(* ....................................................................--
procedure SelectBaud;
(*SelectBaud establishes QPSK oi QAM encoding kx, kl, k2, and the number
of baud in the packet*)

var
ANSWER :integer;
MODANSWER :char;

begin
window(20,10,80,20);

(*Select encoding scheme*)
repeat

clrscr;
writeln('Select modulation desired');
writeln;
writn' A --- QPSK');
writeln(' B --- 16 QAM');
readln(MODANSWER);
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until IODANSWER in fja''A',1bt,'B1I;
if MODANSWER in ['b 3 fB ] then

QAM : = true;

(*Select buad size*)
kx: =0;
repeat

clrscr;
if kx < 0 then writeln('TRY AGAIN');
writeln('What is the length of the bauds (kx)?');
writeln('I.e. 256, 512, 1024, 2048, 4096');
read ln( ANSWER);
case ANSWER of

256: kx:=256;
512: kx:=512;
1024: kx:=1024;
2048: kx:=2048;
4096: kx:=4' .

end; (*case AN. ~
if kx = 0 then-1

until kx > 0;

(*Set bandlimits*)
case kx of

256: begin
kl:=68; k2:=83;

end;
512: begin

kl: =135; k2: =166;
end;

1024: begin
kl:=269; k2:=332;

end;
2048: begin

kl:=537; k2:=664;
end;

4096: begin
ki: =1073; k2: =1328;

end;
end; (*case kx*)

(*Select number of baud*)
write('How many bauds do your desire to transmit?')
readln(NUIBAUDS);
window( 1,1,80,25);

end; (*SelectBaud*)

procedure DisplayQAM;
(*DisplayQAM shows the 16-QAM constellation in the upper portion of the
screen. A window is set at the bottom of the screen for further
interaction with the user. *)

begin

clrscr;
gotoxY(ll1, 1);
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write(chr(218));
for I:= 12 to 64 do

write(chr( 196));
write(chr( 191));
for I:= 2 to 19 do

begin
GotoXY(11,I); write(chr(179));
GotoXY(65,I); write(chr(179));

end;
GotoXY( 11,20);
write(chr( 192));
for I :=12 to 64 do

write(chr(196));
write(chr(217));

window( 12,2,63,19);
write('This program encodes a 16 QAM multifrequenicy');
writeln(' signal.'1);
writeln('The vector space is shown for one frequency.'); )

writeln(' I ,chr( 179).,'
writeln(' ' ,chr(179),' *
writeln(' 4 3 ',chr(179),' 21
writeln(' Ichr(179),'
writeln(' I ,chr(179),' * I)

writeln(' 8 7 ' ,chr(179),' 6 5
writeln( ' __________ ,chr(179),'
writeln( ' ,chr(179),'
writeln(' * , ' cr(179),'*
writeln(' 12 11 ',chr(179),' 10 9
writeln(' 'chr(179),
writeln(' 'chr( 179),'.
writelnC 16 15 ',chr(179),' 14 13
writeln( ' t,chr(179),'

(*active window*)
window( 12,21,80,25);

end; (*DisplayQAM*)
(*.-----------------------------------------------------------------------------------

procedure DisplayQPSK;
(*DisplayQPSK shows the QPSK constellation in the upper portion of the
screen. A window is set at the bottom of the screen for further
interaction with the user. *)

begin
clrscr;
gotoXY( 11,1);
write(chr(218));
for 1:= 12 to 64 do

write(chr( 196));
write(chr( 191));
for 1:= 2 to 19 do

begin
GotoXY(11,I); write(chr(179));
GotoXY(65,I); write(chr(179));

end;
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GotoXY( 11,20);
write(chr( 192));
for I :=12 to 64 do

write(chr( 196));
write(chr(217));

window(12,2,63,19);
writeln('This program encodes a QPSK multifrequency signal.'I);
writeln('The phase are shown for one frequency.');
writeln(' 'chr(179),'
writeln(' * chr(179),'
writeln(' 2 'chr(179),' 1
writeln(' ,chr(179),' )

writeln(' 'chr(179),' )

writeln(' 'chr(179),'
writeln(' ___________chr(179),'

writeln( ' chr( 179),'
writeln(' 'chr(179),' ;

writeln(' 'chr(179),'
writeln(' 'chr(179),' )

writeln(' * chr(179),' ;

writeln(' 3 ,chr(179),' 4
writeln( ' chr( 179),'

(*active window*)
window(12,21,80,25);

end; (*DisplayQPSK*)

procedure SelectQAM;
*(*SelectQAM selects and encodes the symbols for each tone in the band set

by ki and k2. All symbols can be randomly or manually selected. *)

vr RESPONSE :char;
ANSWER,I :integer;
VECTORARRAY :array[ 0.. 4095] of integer;

procedure EncodeData;
(*EncodeData loads the frequency domain arrays XREAL and XIMAG with the
QAH1 symbols in VECTORARRAY and their complex conjugate image. *)

var
J :integer;
TEMPR,TEN'1PI :real;

begin
fillchar(XREALA,sizeof(XREALA) ,0);
fillchar(XIMIAGA ,sizeof(XIMAGA) ,0);
for J:= kl to k2 do

begin
case VECTORARRAY[JI of

0 :TEMPI;= 0.0;
1. . 4 :TEMPI: =90. 0;
5- 8 :TEMPI: =30. 0;
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9.. 12 :TEMPI:=-30.0;
13.. 16: TEMPI: =-90. 0;

end;-( *cas e VECT0RARRAY*)
case VECT0RARRAY[J] of

0 :TEMPR:= 0.0;
1,5,9,13 :TEMPR:= 90.0;
2,6,10,14:TEMPR:= 30.0;
3,7,l1,l5:TEMPR:=-30. 0;
4,8,12,16:TEMPR:=-90. 0;

end; ("case VI'BCT0RARRAY*)

(*Load complex conjugate image*)
XREALA[J] : =TEMPR;
XREALA[ kx-J] : = TEMPR;
XIMAGA[ JJ : = TEMPI;
XIMAGA[ kx-J]:= -TEMPI,

end; (*J: =k1*)
end; (*EncodeData*)

beg~.n
repeat

clrscr;
writeln(' Select one of the-following for baud ',BAUDCOUNT,'. ');
writein;
writeln('R Randomly select all ',k2 - k1 + l,' vectors');
writeln('I Individually select vectors');
readln( RESPONSE);

until RESPONSE in ['r','R', fit ,'I1'1;
fillchar(VECTORARRAY, sizeof(VECTORARRAY) ,0);
case RESPONSE of

'r' ,'R' :for I:= k1 to k2 do
fitVECTORARRAY[ I]:=random( 16)+l;

J'':begin
I:= k1;
while I <= k2 do

begin
repeat

clrscr;
writeln(' Vector Selection Menu');
writeln('# vector desired');
writeln('17 random vector');
writeln('18 no vector');
write('-19 no more tones Tone ',I,'
readln (ANSWER);

until ANSWER in (1.. 19];
case ANSWER of

1.. 16: VECTORARRAY[ I]:= ANSWER;
17: VECTORARRAY[ I]: = random( 16)+l;
18:; (*nop*e)
19:I:= k2;

end; (*case ANSWER*)
I: =1+1;

end; (".while I*~)
end; (*'i' ,'I'*)

end; (*case RESPONSE*)
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EncodeData;
end; (*SelectQAM*)

procedure SelectQPSK;
(*SelectQPSK selects and encodes the symbols for each tone in the band
set by kl and k2. All symbols can be randomly or manually selected. *)

var
RESPONSE :char;
ANSWERI :integer;
PHASEARRAY :array[0. .4095] of integer;

procedure EncodeData;
(*EncodeData loads the frequency domain arrays XREAL and XIMAG with the
QPSK symbols in VECTORARRAY and their complex conjugate image. *)

var
J :integer;
TEMPRTEMPI :real;

begin
fillchar(XREALA,sizeof(XREALA) ,O);
fillchar(XIMIAGA,sizeof(XIMAGA) ,O);
for J:= k1 to k2 do

begin
case PHASEARRAY[J] of

O :TEMPI: =0. 0;
1,2 :TEMPI: =80. 0;
3,4 :TEMPI:=-80.O;

end; (*case PHASEARRAY*)
case PHASEARRAY[J] of

O : TEMPR: = 0. 0;
1, 4 : TEMPR: =80. 0;
2,3 :TEMPR:=-80. 0;

end; (*case PHASEARRAY*)
XREALA[ J] := TEMPR;
XREALA [kx-J]:= TEMPR;
XIMAGA[ J]:= TEMPI;
XIMAGA[ kx-JJ = -TEMPI;

end; (*J:=k1*)
end; (*EncodeData*)

begin
repeat
c 1 rs cr;
writeln(' Select one of the following for baud ',BAUDCOUNT,'.');
writeln;
writeln('R Randomly select all ',k2 - k1 + 1,' phases');
writeln('I Individually select phases');
read ln( RESPONSE);fifl;

until RESPONSE in [ 'r' 2'R' ,'i
-f_ -1- r ( PHA SEARRAY, si4.z 0f (PHASEARAY ,0);

case RESPONSE of
'r I,'R':for 1:= k1 to k2 do
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PHASEARRAY[ II:=random(4)+l;
'i' ,'I':begin

I:= k1;
while I <= k2 do

begin
repeat

cirsor;
writeln(' Phase Selection Menu');
writeln('1f phase desired');
writeln( 5 random phase');
writeln('6 no phase');
write('7 no more tones Tone ',I,'')
readin (ANSWER);

until ANSWER in [1-.7];
case ANSWER of

1..4:PHASEARRAY[I]:= ANSWER;
5: PHASEARRAY[ I]:= random(4)+l;
6:; (*nop*e)
7:I:= k2;

end; (*case ANSWER*)
I: =I+1;

end; ('while I*)
end; (*' i',' I'*)

end; (*case RESPONSE*)
EncodeData;

end; (*SelectQPSK*)

procedure ScaleData;
(*ScaleData converts each real value in array XREAL down to a byte and
stores the byte in packet storage buffer BCST. INDEX sets the location
in the buffer of each byte*')

var
INDEX,J,TEMP : integer;
DATA :byte;

begin
for J := 0 to kx-1 do

begin
TEMP := round(XREALA[J] + 126);
if TEMP < 0 then

TEMP : =0;
DATA :TEMP;
INDEX :J + (BAUDGOUNT - 1) * kx -28673;

BCST[INDEX] := DATA;
write(THEFILE ,DATA);

end; (*for J*)
end; (*ScaleData*)

procedure Dmainit(var BOST :BCSTARRAY;
BYTECOUNT : integer);

(*Assembly language procedure used to initialize and unmask the D14A for
data transfer. The source must be converted to a BIN file. *)
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external 'DMAINIT5. BIN';

procedure Dmastop; (*Masks DMA, stopping data transfer*)
external 'DMASTOP. BIN';

procedure TINPUT;
(*This procedure reads in binary file, HOUTFA1.DAT, into an array,
performs an FFT using ComplexFFT and displays the results
with GraphData*)

var
NUMPTS : integer;

procedure GetData;
(*GetData reads time domain sequence from file HOUTFAl. DAT into XREAL*)

var
THEFILE :file of byte;
DATA :byte;
I,
TEMP :integer;
rdata :real;

begin
assign(THEFILE, 'HOUTFAl. DAT');
reset(THEFILE);
new(XREAL);
new(XIMAG);
fillchar(XREAL^,sizeof (XREALA),O);
fillchar(XIMAGA,sizeof (XIMAGA),0);
for I := 0 to kx-i do
begin

read(THEFILE,DATA);(*read file one byte at a time*)
TEMP DATA;
temp temp and 255; (*reduces number of bits used*)

(*to represent the input data*)

XREALA[ I] := (TEMP - 126); (*loads XREAL array*)
end; (*for I*)

close(THEFILE);
end; (*GetData*)

procedure PutData;
(*Writes frequency domain arrays XREAL and XIMAG to file TFFTOUT.OUT-,")

var
I :integer;
OUTFILE :text;

begin
assign(OUTFILE, 'TFFTOUT. DAT');
rewr41e(OUTFILE);
for I := 0 to kx-l do

writeln(OUTFILE,I,' ',XREALA[I] ,' ',XIMAGA[I]);
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close(OUTFILE);
end; (*PutData*)

procedure GraphData;
(*GraphData plots the kx/2 points of complex array XREAL and XIMAG.
Symbols are decoded and represented by the color of each tones
spectral line. *)

var
IJ, (*rloop, indices*)
KXDIV2,
COLOR,
x'xz,
Y,YZ :integer;

begin
Graph~olorMode;
palette( 2);
Graphbackground( 0);
draw(30,10,30,170,1); (*y-axis*)
draw(30,170,300,170,l); (*x-axis for full spectrum*)
draw(3O,155,300,155, 1);
draw(30,80,300,80,1); (*x-axis for zoom spectrum*)

(*every other dot equals one bin at 256*)
draw(166,170,166,174,1); (*x-axis scale marks*)
draw(196,170,196,174,l); (*x-axis scale marks*)
draw(30,113,26,113,I); (*y-axis scale marks*)
draw(30,23,26,23,1); (*y-axis scale marks*)
I: = 23;

(*Grouping of 4 horizontal lines to identify background color
used for one of the symbols*e)

repeat
draw(31,I,300,I,O);
draw(31,I+l,300,I+l, 1);
draw(31, 1+2,300,1+2,2);
draw(31 ,I+3,3OO-,I+3,3);
I: 1I+12;

until I > 75;
KXDIV2 :=round(kx / 2);

(*Decode symbols and assign color*)
for I :=0 TO KXDIV2 do
begin
if (XREALA[I] >= 0) and (XIMAGA[ I] > 0) then

COLOR :=0;
if (XREALA[II < 0) and (XIMAGA[I] > 0) then

COLOR :=1;
if (XREALA[I] < 0) and (XIMAGA[I] <= 0) then

COLOR :=2;
if (XREALA[I] >= 0) and (XIMAGA[I] <= 0) then

COLOR :=3;

(*zoom spectrum*)

if (I >= kl) and (I <= k2) then
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begin
XZ round(((I * 4096.0) / kx) - 1040);
YZ 80 - round(0.5*(sqrt(sqr(XREALA[I]) + sqr(XIIIAGA[I]))));
draw(XZ,80,X ,YZ,COLOR);
end;

(*full spectrum*)

X :=round(I/KXDIV2 * 256 +30);
Y :=170-round(20*ln(sqrt(sqr(XREALA[ IJ+1)+

sqr(XIMAGA[ I] +1)))/ln( 10));
draw(X, 170,X,Y,COLOR);
end;

end; (*GraphData*)

begin
INVERSE :=false; (*sets forward FFI%)
ERROR :=0;
GetData;
NUMPTS :=kx;
writeln( 'Performing FFT');
ComplexFFT (NUIIPTS,INVERSE ,XREAL,XIMIAG,ERROR);
writeln('Error = ',ERROR,' hit the enter key');readln;

PutData;

GraphData;
end; (*Tinput*)

('-----------------------------------------------------------------------------

begin
repeat

cirscr;
assigin(THEFILE, 'HOUTFAl. DATt );
rewrite(THEFILE);
new(XREAL);
new(XIMAG);
INVERSE:=true;
QAM: =f alse;

SelectBaud;

if QAM then
DisplayQAM

else
Disp layQPSK;

(*Packet contruction loop*)
for baudcount := 1 to numbauds do

begin
if QAM then

SelectQAM
else

SelectQPSK;
write ln( 'Performing IFFT');
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ComplexFFT(kx, INVERSE ,XREAL,XIMAG ,ERROR);
ScaleData;

end; (*for BAUDCOUNT*,")

dispos e( XREAL);
dispose(XIMAG);
close(THEFILE);
BYTEGOUNT :=NUMBAUDS*kx-l;
writeln('Press return to transmit'); readln;

Dmainit( BCST,BYTECOUNT);

repeat
writeln('Transmit some more? (*yes or no*) )
readln( ANSWER);

until ANSWER in ['n','N','Y ',IY1];
dmastop;
window(l,l,80,25);

until ANSWER in ['n','NJ
Tinput;

end.
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APPENDIX F. XMITMES
program XMITMES;
(*Transmits a syncbaud and message from file 'MESSAGE.DAT'. The message
is encoded using QPSK. 'MESSAGE.DAT' is a text file. It should already
exist before using this program. Output is used to collect data for
TESTING*)

const
FIRSTELEMENT = -28929;

type
TNvector = array[O..4095] of real;
TNvectorPtr = ATNvector;
(*Sync + 61440*)
BCSTARRAY = array[FIRSTELEMENT.-.32767] of byte;

var
kx,
kl,k2,I,w,
NUMBAUDS, MAXNUMBAUDS,
BAUDCOUNT, BYTECOUNT,
SY.BOLCOUNT, MAXNUMCHAR,
MESSAGESIZE :integer;
MAGNITUDE,
CHARACTERSPERBAUD :real;
XREAL,XIMAG :TNvectorPtr;
INVERSE :boolean;
TEMPBYTE,ERROR :byte;
BUST : BCSTARRAY;
BYTEFILE :file of byte;
TESTFILE :text;
ANSWER,
NEXTCHAR :char;

(*$I FFT87B2. INC*)

(*$I COMPFFT. INC*)

(* ---------. -. ------------------------------------------------------.. )

procedure SyncBaud;
(*Process the synchronization baud and stores the 256 point time domain
sequence at the beginning of the packet storage area.*)

var
SYNCREAL, SYNCIMAG TNvectorPtr;
J, TEMP integer;
SYNCDATA byte;
SYNCMAG real;

begin
new(SYNCREAL);
new( SYNCIMAG);
SYNCMAG: = MAGNITUDE;
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(*load synchronization symbols*)
fillchar(SYNCREALA,sizeof(SYNCREALA) ,0);
fillchar(SYNCIMIAGA,sizeof(SYNCINIAGA) ,0);
SYNCREALA[ 68] = -SYNCIIAG; SYNCIMAGA[ 68]:= -SYNCMAG;
SYNCREALA[ 69] = -SYNOMAG; SYNCIMAGA[ 69]:= -SYNOMAG;
SYNCREALA[ 70]:= -SYNCIIAG; SYNCIMAGA[ 70]:= SYNCMAG;
SYNCREALA[ 71]:= -SYNCMAG; SYNCIMAGAI 71]:= SYNCMAG;
SYNCREALA[ 72]:= SYNCMAG; SYNCIMAGAf 72] = -SYNOMAG;
SYNCREALA[ 73]:= SYNCMAG; SYNCIMAGA[ 73]:= SYNCMAG;
SYNCREALA[ 74]:= -SYNCMAG; SYNC IMAGA[ 74]:= SYNCMAG;
SYNCREALA[ 75]:= SYNCHAG; SYNCIMAGA[ 75]:= SYNCMAG;
SYNCREALA[ 76]:= -SYNOMAG; SYNCIMAGA[ 76]:= SYNCMAG;
SYNCREALA[ 77]:= -SYNCHAG; SYNCIMAGA[ 77]:= -SYNCMAG;
SYNCREALA[ 78]:= SYNCMAG; SYNCIMAGA( 78]:= -SYNOMAG;
SYNCREALA[ 79]:= -SYNCMAG; SYNCIMAGA[ 79]:= -SYNCMAG;
SYNCREALAf 80]:= SYNOMAG; SYNCIMAGA[ 80]:= SYNOMAG;
SYNCREALA[ 81] = SYNCMAG; SYNCIMAGA[ 81]:= -SYNOMAG;
SYNCREALA[ 82]:= -SYNCMAG; SYNCIMAGA[ 82]:= -SYNCMAG;
SYNCREALA[ 83]:= SYNCMAG; SYNCIMAGA[ 83]:= SYNOMAG;

(*complex conjugate image*)
for J :=68 to 83 do

begin
SYNCREALA[ 256-J]:= SYNCREALA[ 3];
SYNCIMAGAf 256-J]:=-SYNCIMAGA[ 3];

end; (*for J*)

ComplexFFT( 256,INVERSE, SYNCREAL, SYNCIMAG,ERROR);

(*scale data/load time sequence*)
for J3: 0 to 255 do

begin
TEMP:=round(SYNCREALA[J] + 126);
if TEMP < 0 then

TEMP:=0;
SYNCDATA: =TEMP;
BCST[ J+FIRST_-ELEMENT]:=SYNCDATA;

end; (*for J*)
dispose( SYNCREAL);
dispose( SYNCIMAG);

end; (*SyncBaud*)
----------------------------------------------------------

procedure SelectBaud;
(*SelectBaud establishes kx, k1, and k2*)

var
ANSWER :integer;

begin
kx: =0;
(*select baud size*)
repeat

if kx < 0 then writeln('TRY AGAIN');
writeln('What is the length of the bauds (kx)?');
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writeln(ti.e. 256, 512, 1024, 2048, 4096');
readln(ANSWER);
case ANSWER of

256: kx:=256;
512: kx:=512;
1024: kx:=1024;
2048: kx:=2048;
4096: kx:=4096;

end; (*case ANSWER*)
if kx = 0 then kx -1

until kx > 0;

(*set tone limits*)
case kx of

256: begin
kl:=68; k2:=83;

end;
512: begin

k1:=135; k2: =166;
end;

1024: begin
kl:=269; k2: =332;

end;
2048: begin-

kl:537; k2:66;
end;

4096: begin
klr=1073; k2:=1328;

end;
end; (*case kxQ)

end; (QSe~ectBaud*)

procedure TailorPacket;
(*TailorPacket sets the maximum number of baud required to encode the
mess ageQ)

begin
MESSAGESIZE: = filesize(BYTEPILE);
writeln('liessage is ',IESSAGESIZEK' bytes."');

(Qkx/2 is the number of bit/baud for QPSK. kx/2-2 is the number
for DQPSK. Each character is 8 bitsQ)

CHARACTERSPER-BAUD:=(kx/8 - 2)/8;

Q*61440/0x is maximum number of bauds possible*)
MAXNUMI-CHAR: = trunc( 61440. 0/kx * CHARACTERS_PER_BAUD);
if MESSAGESIZE > MAXNUMCHAR then

begin
writeln(-'lessage is to large. The last '

MESSAGESIZE - ?IAXNUMCHAR,
characters will not be transmitted. ');

MESSAGESI ZE:=MAXNUMCHAR;
end;

MAXNUMBAUDS:=trunc(MESSAGESIZE / CHARACTERS_PER-3AUD);
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(*ensure last few characters are included*)
if frac(MESSAGESIZE / CHARACTERS_PER_BAUD) > 0.0 then

MAXNUMBAUDS: IIAXNUMBAUDS + 1;

repeat
writein;
writeln(QEnter number of ',kx,' bauds to process.

MAXNUMBAUDS,' is the maximum.'2);
read ln( NUMBAUDS);

until NUMBAUDS in 1l.. MAXNUMBAUDS];
end; (*TailorPacket*)

procedure DiffEncode;
(*DiffEncode differential encodes symbols on a tone-to-tone basis.
BYTEFILE is read from one byte at a time. The byte is isolated into
2-bit groups and stored in BITS. BITS is then used to DQPSK encode the
frequency domain arrays XREAL and XIMAG. Bytes partially encoded are
carried over into the next baud by global variable TEMPBYTE. *)

var
J :integer;
BITS :byte;

begin
fillhar(XREALA,sizeof(XREALA) ,0);
fillchar(XiIAGA,sizeof(XIMAGA) ,0);

(*first tone of every baud set to pi/2*)
XREALA[ ki] = MAGNITUDE;
XIMAGA[kl]: MAGNITUDE;

if SYMBOLCOUNT = 0 then
read( BYTEFILE ,TEMPBYTE);

(*break apart character*)
for J:= (kl + 1) to k2 do

begin
SYMBOLCOUNT:=SYMBOLCOUNT + 1;
if frac(SYMBOLCOUNT / 4) = 0.25 then

BITS:= (TEMPBYTE And $00) shr 6;
if frac(SYMBOLCOUNT / 4) = 0.5 then

BITS:= (TEMPBYTE, and $30) shr 4;
if frac(SYMBOLCOUNT / 4) = 0. 75 then

BITS:= (TEMPBYTE and 0C) shr 2;
if frac(SYMBQLCOUNT / 4) = 0.0 then

begin
BITS:= TEMPBYTE and $03;
if not EOF(BYTEFILE) then

read( BYTEFILE ,TEMPBYTE)
else

en;TEMPBYTE:=S40; (*f ill character*)

if (BITS < 0) and (BITS > 3) then
writeln('Bits not assigned properly');
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(*differential encode*)
case BITS of

0: begin XREALA[J]: = XREALA[J-l];
XIMAGA[J]:= XIMAGA[J-1]; end;

1: begin XREALA[J] :=-XIMAGA[J-l];
XIMAGA[ J] : = XREALA[J-l] ; end;

2: begin XREALA[J]:= XIMAGA[J-l];
XIMAGA[J]: =-XREALA J-l]; end;

3: begin XREALA[ J] : =-XREALA[ J-l];
XIMAGA[J] :=-XIMAGA[J-l]; end;

end; (*case BITS*)
end; (*for J*)

(*complex conjugate image*)
for J:= kl to k2 do

begin
XREALA[kx - J]:= XREALA[J];
XIMAGA[kx - J]:=-XIMAGA[J];
writeln(TESTFILE,BAUDCOUNT: 4,J: 5,trunc(XREALA [J]): 6,

trunc(XIMAGA[J] ): 6);
end;

end; -*Dif fEncode*)
-------------------------------------------------------------------
------------------------------------------------------------------

procedure ScaleData;
(-*ScaleData converts each real value in XREAL down to a byte and stores
the byte in the packet storage buffer, BCST. INDEX establishes the
location in the buffer of each byte in the packet.*)

var
INDEX,J,TEMP : integer;
DATA :-byte;

-begin
for J := 0 to kx-l do

begin
TEMP := round(XREALA[J] + 126);
if TEMP < 0 then

TEMP := 0;
DATA := TEMP;

(*256 is added to INDEX to start message bauds
after the sync baud*)

INDEX :-= J+(BAUDCOUNT-1)*kx+FIRST_ELEMENT+256;
BCST[INDEX] := DATA;

end; (*for J*)
end; (*ScaleData*)

-------------------------------------------------------------------

procedure Dmainit(var BCST :BCSTARRAY;
BYTECOUNT : integer);

(*Assembly language procedure used to initialize and unmask the DMA for
data transfer; The source code must be converted to a BIN file. *)

external 'DMAINIT5. BIN';
-------------------------------------------------------------------
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procedure Dmastop;
(*Masks DMA, stopping data transfer. *)
external 'DMASTOP. BIN';

begin
clrscr;

(*contains hex values to be encoded and transmitted*)
assign(BYTEFILE, 'MESSAGE. DAT');
reset(BYTEFILE);

(*Output file of encoded symbols. Used for system testing*)
assign(TESTFILE, 'XMITDAT. DAT');
rewrite( TESTFILE);

INVERSE:=true;
repeat
writeln('Enter magnitude of tones, (must be > 0.0)')
read ln( MAGNITUDE);

until MAGNITUDE > 0. 0;

writeln('Loading sync baud.');
SyncBaud;

SelectBaud;
TailorPacket;

SYMI-BOLCOUNT: =0;
TEIMPBYTE: =$00;
writeln('Number of bauds is ',numbauds);
new(XREAL);
new(XIMAG);

for baudcount :=1 to numbauds do
begin

DiffEncode;
writeln('Performing IFFT ',BAUDCQUNT,' '

NUMBAUDS-BAUDCOUNT,' left');
ComplexFFT(kx, INVERSE ,XREAL,XIMAG,ERRQR);
ScaleData;

end; (*for BAUDCOUNT*)

dispose(XREAL);
disposeC XIMAG);
close( BYTEFILE);
close(TESTFILE);
BYTECOUNT := 256 + NUMBAUDS*kx - 1;

repeat
writeln('Press return to transmit'); readln;
Dmainit( BCST, BYTECOUNT);
repeat

writeln('Transmit some more? (*yes or no*) t);
read ln( ANSWER); 

l;until ANSWER in ['n','N','1,''t
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dmastop;
until ANSWER in ['n','N'];

(* reset(TESTFILE);
while not EOF(TESTFILE) do

begin
while not EQLN(TESTFILE) do

begin
read(TESTFILE ,NEXTCHAR);
write( NEXTOHAR);

end;
* readln(TESTFILE);

writeln;
end;

close(TESTFILE); *)
end.
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APPENDIX G. DMAINIT

codeseg segment
public dmainit
assume cs:codeseg

,procedure DMAINIT ( BLKADDRESS : XMITPOINTER;
BYTECOUNT INTEGER);

;this procedure initializes dma channel 3 and sets the
,parameters to output the array bcst by passing the address
,of the array start on the stack. BYTECOUNT is the number
;of bytes to transfer and is pushed on the stack by the
;calling program

dma equ 0
dmapage equ 80h

dmainit proc near
push bp
mov bp,sp ;use bp to address stack
les di,dword ptr[bp+6];move add of bcst into es:di
mov al,5bh ;dma chan 3 single mode, read, autoinit
out dma+ll,al
out dma+12,al ;reset first/last ff
mov ax,es ;calc high order 4 bits of buffer area
mov cl,4
rol ax,cl
push ax ;save ax for dma start addr
and al,Ofh
out dmapage+2,al ;store in ch 3 dma page reg
pop ax
and al,OfOh
add ax,di ;get page offset
out dma+6,al ;output waveform buffer start addr
mov al,ah
out dma+6,al
mov ax,[bp+4] ;output dma byte count
out dma+7,al
mov al,ah
out dma+7,al
mov al,3 ;unmask ch 3 to start
out dma+lO,al
pop bp
ret 6 ;pop 6 bytes off stack for aadr of bcst

dmainit endp
codeseg ends
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APPENDIX H. DMASTOP
codeseg segment

public dmastop
assume cs: codeseg

procedure DMASTOP;

;this procedure stops dma channel 3

dma equ 0
dmapage equ 80h

dmastop proc near
push bp
mov al,7 ;miask ch 3 to stop
out dma+1O,al
POP bp
rat

dmastop endp
codeseg ends
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APPENDIX I. RECEIVE
program RECEIVE;
(*This program acquires an analog signal, stores the raw data in a memory
buffer, converts the data to TYPE real, performs an FFT using COMPFFT,
differential decodes between adjacent tones and displays the result in
the frequency domain with the phase quadrant represented by color.
Data input can also be read in from the time domain sequence file
HOUTFAL. DAT generated by program TRANSMIT*-)

uses Graph, Crt, tp4dl6;

(*I-*)
(* R-*)

const
kx = 256; (*set baudlength*)
kxml = 255;

type
TNvector = array[O..kxml] of real;(*TYPE for real and imaginary

data for FFT routing*)
TNvectorPtr = ATNvector; (*Pointer for FFT data array

which allows dynamic allocation
of memory*)

var
INVERSE :boolean;
XREAL, XIMAG :TNvectorPtr;
ERROR :byte;
NUMPTS,
kl,k2 :integer;
ANSWER :char;

(*$I FFT87B2.INC*)
(*$I COMPFFT. INC*)

procedure AcquireData;
(*AcquireData intializes Metrobyte DASH -16F data acquisition board.
Using TTOOLS procedures Dl6_init and D16_ainm. Data transfer is
controlled by the DMA controller and initialized by D16_ainm, and
disabled by D16_dma_int_disable. TTOOLS procedures are external
procedures included by uses' tp4dl6.*)

const max_buffer = 1000;

var i: integer;
rate: real;
cnt_num, mode, cycle, trigger,
baseadr, err_code, int_level, dma !evel,
board-num, chanlo,
op-type, status, next cnt, err_code_s : integer;
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dmaPointer: pointer;
datavector: Ainteger;

ad_data, chandata: array[0..max-buffer] of integer;

begin
clrscr;

(*allocates memory on the heap and returns a pointer to the -start
of the buffer*)

GetDMABuffer(maxbuffer,dmaPointer,errcode);

(*This statement assigns a generic pointer to a variable of a
specific pointer type, i.e. Ainteger, so that the pointer can be
passed to the d16-ainm routine.*)

datavector dmaPointer;
board_num 0; int_level := 7; dmalevel := 1;
base-adr $300;

(*initialize the driver*)
d16_init(board.numbaseadr,int-level,dma.level,errcode);
chanlo := 0;
cycle:=0; (*0 - one sweep of the DMA I - autoinitialize*)
trigger:=0; (.0 - external 1 - internal*)
cntnum:=kx;(*# of samples*)
rate : 10000.0; (*used for internal trigger*)
mode : 2; (*DMA mode*)

writeln('Ready to acquire');
(*colects kx analog values using DMA and stores in a buffer*)
dl6_ainm(board_num,chanlo,mode,cycle,trigger,cntnum,rate,

datavectorA,errcode);

(*status indicates the progress of acquisition. When all
samples have been acquired status=0*)
status := 11;

(*wait until all data acquired*)
repeat

dl6-dmaint_status(boardnum,op-type,status,next-cnt, err_codes);
until status = 0;
writeln('Data received');

if errcode <> 0 then
dl6_print error(errcode)

else
begin

writeln('Processing data');

(*converts left justified data, returns the true binary value
of the sampled data*)

d16_convertdata(2047,cntnum,datavectorA,ad_data[0],
chandata[0],0,err code);

new(XREAL);
new(XIMAG);
fillchar(XREALA,sizeof (XREALA),0);
fillchar(XIMAGA,sizeof (XIMAGA),0);
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for I:= 0 to kxml do
begin

XREALA[I] :=d..data[l]/5;
end;

end;

(*stop DMA operation if in autoinitialization*)
d16_dma-itdisable(board..num,err~sode);.

(*frees memory allocated with GetDMABiuffer*)
FreeDMABuffer( max-buffer, dmaPointer, err..code);

end; (*Acquire*)

procedure GetData;
(*GetData loads XREAL with the real time domain sequence generated by
program TRANSMIT. Only one baud is loaded*)

vear
THEFILE :file of byte;
DATA :byte;
I,
TEMP :integer;

begin
assign(THEFILE, 'HOUTFAl. DAT1 );
reset(THEFILE);
new( XREAL);
new( XILMAG);
fillchar(XREALA,sizeof (XREALA),O);
fillchar(XIMAGA,sizeof (XIMAGA) ,O);
for I :=0 to kxml do

begin
read(THEFILE,DATA); (*read-file one byte at a time*)
TEMP :_DATA; (*puts byte into integer variable*)
XREALA[I] :=(TEMP - 126); (*loads XREAL array*)

end; (*for I*)
close(THEFILE);

end; (*GetData*)

procedure DiffDecode;
(*DiffDecode differentially decodes complex frequency domain arrays XREAL
and XIMAG. Four decoded symbols are recombined into a byte and
transferred to file BYTESOUT.DAT.'*)

var
I,
SYMBOLCOUNT :integer;
TEMPREAL,TEMPIMAG :real;
BITS,TEMPBYTE :byte;
TEMPOHAR :char;
OUTFILE :TEXT;

begin
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assign(OUTFILE, 'BYTESOUT. DAT');
rewrite(OUTFILE);
SY.BOLCOUNT: =0;
TEMPBYTE: =0;
for I := k1 to (k2 - 1) do

begin
(*Complex multiply two adjacent tones, I and the complex conjugate of
I+1. This will give the phase difference between the two tones.
The answer is in rectangular notation*)

TEMPREAL:=XREALA[I] * XREALA[I+l] + XIMAGA[I] * XIMAGA[1+1];
TEMPIMAG:=XREAL^[I] * XIMAG^[I+] - XREALA[I+i] * XIMAG^[ I];

(*Complex multiply (TEMPREAL + j TEMPIMAGE) and (l+j). This rotates
the differential vector 45 degrees. XREAL and XIMAG are used to
store the results. This eliminate the original data*)

XREALA[ I]: =(TEMPREAL - TEMPIMAG)/80;
XIMAGA[ I]: =(TEMPREAL + TEMPIMAG)/80;

if (XREALA[I >= 0) and (XIMAGA[I] > 0) then
BITS: =$00;

if (XREALA[I] < 0) and (XIMAGA[I] > 0) then
BITS: =0l;

if (XREAL^[I] < 0) and (XIMAGA[I] <= 0) then
BITS: =$03;

if (XREALA[I] >= 0) and (XIMAG^[[I] <= 0) then
BITS: =$02;

SYMBOLCOUNT := SYMBOLCOUNT + 1;

(*fill TEMPBYTE with four symbols*)
if frac(SYMBOLCOUNT / 4) = 0.25 then

TEMPBYTE := (BITS shl 6);
if frac(SYMBOLCOUNT / 4) = 0.5 then

TEMPBYTE := (BITS shl 4) or TEMPBYTE;
if frac(SYMBOLCOUNT / 4) = 0. 75 then

TEMPBYTE := (BITS shl 2) or TEMPBYTE;
if (frac(SYMBOLCOUNT / 4) = 0.0) then

begin
TEMPBYTE : BITS or TEMPBYTE;
TEMPCHAR : chr(TEMPBYTE);
write( OUTFILE,TEMPCHAR);
TEMPBYTE: =0;

end; (*if frac*)
end; (*for I*)

TEMPCHAR := chr(TEMPBYTE);
write(OUTFILE,TEMPCHAR); (*puts two 0 at end of each baud*)
close(OUTFILE);

XREALA[k2]: =0;
XIMAGA[ k2] : =0;

end; (*DifffDecode*)

procedure GraphData(XR, XI:TNVectorPtr):
(*GraphData graphs complex arrays XR and XI. Two scales are used: Full

scale, 0 to kx/2 tones and Zoom scale, k1 to k2*)
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var
grDriver ,gr1~ode ,ErrCode,
I,J, (*loo~p indices*)
kl,k2,
MXDIV2,
COLOR,
x,xz,
Y,YZ : integer;

begin
k1 round(kx * 67.0 / 256.0);
k2 round(kx * 83.0 / 256.0);
grDriver := EGA;
gr~ode :=EGAHi;
initgraph( grDriver ,grMode, c: TP4 GRAPHICS');
ErrCode :=GraphResult;
if ErrCode <> grOK then

begin
writeln( 'Graphics error: ', GraphErrorMsg(ErrCode));
writeln('Program aborted...')
Halt( 1);

end; (*if ErrCode*)
SetBKColor(black);
SetColor(white);

(*axis contruction*)
line(60,300,600,300); (*x-axis for full spectrum*)
line( 68, 140,600,140); (*x-axis for zoom spectrumi*)
line(332,300,332,308); (*x-axis scale marks*)
line(392,300,392,308); (*x-axis scale marks*~)
line(60,300,60,308);
line(572,300,572,308);
lineC 96, 140,332,300);
line(576, 140,392,300);

MXDIV2 :round(kx / 2);

for 1 0 to MXDIV2 do
begin
if (XRA[I] >= 0) and (XIA[I] > 0) then

SetColor( lightmagenta);
if (XRA[I] < 0) and (XIA[I] > 0) then

SetColor( lightgreen);
if (XRA[I] < 0) and (XIA[I] <= 0) then

SetColor( lightred);
if (XRA[I] >= 0) and (XIA[I] <= 0) then

SetColor( yellow);

(*zoom spectrum*)

if (I > k1) arid (I <= k2) then
begin

XZ :round(2*((I * 4096.0 / kx) - 1Q40));
YZ :140 - round(sqrt(sqr(XRA[IJ) + sqr(XIA[1])));
line(XZ, 140,XZ,YZ);
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end;

(*full spectrum*)

X round(2*(I/MXDIV2 * 256 + 30));
Y 300 - round(sqrt(sqr(XRA[I]) + sqr(XIA[I])));
line(X,300,X,Y);

end;

(*graph labels*)
set color( lightgray);
outtextXY( 60,320,'0)
outtextXY( 331,320, 'ki');
outtextXY( 391,320, 'k2');
outtextXY(565,320, 'kx/2');
outtextXY( 150,330 ? 'frequency--->)
outtextXY(20,250, amplitude');
readin;
outtextXY(300,330,'Press return to continue. );

readin;
CloseGraph;

end; (*GraphData*)

begin (*main body*)
INVERSE :=false; (*sets forward FFT*)
ERROR 0;
NUMPTS kx;
k1 round(kx * 67. 0 /256. 0 + 1);
k2 round(kx * 83.0 /256.0);

repeat
writeln('Enter 1 to sample data');
writeln(' 2 to read data from an ASCII file');
read ln( ANSWER);

until ANSWER in [ '1',2]

if ANSWER ='1' then
(*AcquireData samples input analog signal*)

AcquireData
else

GetData;
(*GetData reads a file of discrete sample produced in the transmitter.
GetData is used for testing Graphics and Decoding procedures without
the need for external hardware and Data aquisition board
initialization*)

writeln('Computing FFT');
ComplexFFT (NUNIPTS, INVERSE,XREAL,XIMAG,ERROR);
DiffDecode;
( writeln('Error = ',ERROR,' hit the enter key');readln;*)
GraphData(XREAL, XIMAG);

end.
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APPENDIX J. RECMES
program RECEIVER;
(*Acquires the signal. Stores it in a memory buffer. Differential decodes
between tones. Maximum number of bauds are received. The number of
bauds processed is a user input*)

uses Graph, Crt, tp4dl6;

const MAXLBUFFER = 65500;

type
TNvector = array-0. .4096- of real; (*TYPE for real and imaginary data

for FFT routing*)
TNvectorPtr = ATNvector; (*Pointer for FFT data array which

allows dynamic allocation of memory*)

var
INVERSE :boolean;
X. 1L, XIMAG :TNvectorPtr;
ERROR, TEMPBYTE: byte;

kl,k2,kx,ASWER,
ERRCODE, BAUDGOUNT,
SYMBOLCOUNT,
NUMBAUDS,
MAXNUM'BAUDS :integer;
MAGNITUDE,
PHASE :real;
DATAVECTOR :Ainteger;
DIHAPOINTER :-pointer;
TESTFILE,
OUTFILE :TEXT;

(*$I FFT87B2. INC*)
(*$I COMPFFT. INC*)

------------------------------------------------------------- 'c

procedure PacketSetUp;

begin
repeat

clrscr;
if kx < 0 then writeln('TRY AGAIN');
writeln('Enter baud size')
readln(ANSWER);
case ANSWER of

256: kx: = 256;
512: kx:= 512;
1024: kx: =1024;
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2048: kx: =2 048;
4096: kx:=4096;

end; (*case*)
if kx = 0 then kx := -1;

until kx > 0;
MAXNUMBAUDS := trunc((MAX_BUFFER/2)/kx);

repeat
writein;I
writeln('Enter number Iof ',kx,' bauds to process.

MAXNUMBAUDS,' is the maximum.')
readln( NUMBAUDS);

until NUMBAUDS in [1.. MAXNUMBAUDS];

ki round(kx * 67. 0 /256. 0 + 1);
k2 round(kx * 83.0 I256.0);

end; (*PacketSetUp*)

procedure AcquireData;
(*AcquireData initializes Metrobyte DASH-16F data acquisition board,
using TTOOLS procedure D16_mnt and D16..ainm. Data transfer is
controlled by the DMA controller and initialized by Dl6-ainm and
disabled by D16.dma-int-disable. TTOOLS procedures are external
procedures included by 'uses' tp4dl6.*)

var
RATE: real;
I, CNT-NIUM, IMODE, CYCLE, TRIGGER,
BASE-ADR, INT-.LEVEL, DMALEVEL,
BOARDNUN, CHANLO,
OPTYPE, STATUS, NEXT..CNT, ERR_CODE_S :integer;

begin
BOARD.NULM :0; INT_-LEVEL := 7; DMALEVEL :1;
BASEADR $ 300;

D16_init( BOARILNUM, BASE..ADR, INL LEVEL,DMALEVEL,ERR-CODE);

CHANLO := 0;
CYCLE: =0; (*0-one sweep of the DMA 1-autoinitialize*)
TRIGGER: =0; (*0 - external 1 - internal*)
ONTNUM:=trunc(MAXBUFFER / 2); (*// of samples*)
RATE :10000. 0; (*used for internal trigger*)
MODE :2; (*DMA mode,")
writeln('Ready to acquire');

D16_ainm(BOARD.NUM,CHANLO,MODE,CYCLE ,TRIGGER,CNT..NUM,
RATE, DATA VECTORA ,ERR..CODE);

STATUS := 11;

'*status indicates the progress of acquisition. When all
sanples have b1-een acquired status0*)

repeat
D16_dma-nt-.status(BOARD_NUM,OPTYPE ,STATUS ,NEXT..CNT, ERR_CODE.S);
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until STATUS =0;
writeln( 'Data received');

if ERR-CODE <> 0 then
D16..print-.error(ERR..CODE);

D16-dma-imt-disable(BOARD..NUM,ERRCODE);

end; (*Acquire*)

procedure ConvertData;
(*ConvertData seperates channel and acquired data. CHAN_DATA is not used.
Acquired data is stored in XREAL. *)

var
AD_.DATA: array[ 0. .4096] of integer;
I ,CHAN-.DATA ,ERR..CQDE,
SEGMIENTPART, OFFSETPART: integer;
NEWDATA VECTOR :Ainteger;
TEMPPOINTER :pointer;

bgnwriteln( 'Processing baud ',BAUDCOUNT);
fillchar(XREALA,sizeof (XREALA),O);
fillchar(XIMAGA,sizeof (XIIIAGA),O);
SEGM1ENTPART:=s eg( DATAVECTORA);
OFFSETPART:=ofs(DATAVECTORA) + 2 * kx *(BAUDGOUNT -1);

TENIPPOINTER:=ptr( SEGMENTPART, OFFSETPART);
NEWDATAVECTOR :=TEIMPPOINTER;
dl6_convert_data( 2047 ,kx,NEWDATAVECTORA ,ADDATA[ 01

CHAN-DATA,0, ERRS ODE);

for I:= 0 to (kx - 1) do
begin

XREALA(I] : D...DATA[I]/5;
end;

end;- (*ConvertData*)

procedure DiffDecode;
(*DiffDecode differentially decodes complex frequency domain arrays XREAL
and XIMAG. Four decoded symbols are recombined into a byte and
transferred to file BYTESQUT. DAT. *)

var
I :integer;
TEMPREAL,TEMPIMAG :real;
BITS :byte;
TEMPCHAR :char;

begin

for I :=ki to (k2 - 1) do
begin

(*Complex multiply two adjacent tones, I and the complex conjugate of I+1.
This will give the phase difference between the two tones. The answer
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is in rectangular notation*)
TEMPREAL:=XREALA[I] * XREALA[I+l] + XIMAGA[I] * XIMAGA[I+l];
TEMIPIMAG:=XREALA[I] * XIMAGA[I+l] - XREALA[I+l] * XIMAGA[ I];

(*Complex multiply (TEMPREAL + j TEMPIMAGE) and (l+j). This rotates the
differential vector pi/4 radians. XREAL and XIMAG are used to store
the results. This eliminate the original data*)

XREALA[ I]: =(TEMPREAL - TEMPIMAG)/80;
XIMAGA[ I]: =(TEMPREAL + TEMPIMAG)/80;

(*decode*)
if (XREALA[I] >= 0) and (XIMAGA[I] > 0) then

BITS:=$00;
if (XREAL^[I] < 0) and (XIMAGA[I] > 0) then

BITS: =$01;
if (XREAL^[ I] < 0) and (XIMAGA[I] <= 0) then

BITS: =$03;
if (XREALA[I] >= 0) and (XIMAGA[II <= 0) then

BITS: =$02;
SYMBOLCOUNT := SYMBOLCOUNT + 1;

(*fill TEMPBYTE with four symbols*)
if frac(SYMBOLCOUNT / 4) = 0.25 then

TEMPBYTE := (BITS shl 6);
if frac(SYMBOLCOUNT / 4) = 0.5 then

TEMPBYTE := (BITS shl 4) or TEMPBYTE;
if frac(SYMBOLCOUNT / 4) =. 75 then

TEMPBYTE := (BITS shl 2) or TEMPBYTE;
if (frac(SYMBOLGOUNT / 4) = 0.0) then

begin
TEMPBYTE : BITS or TEMPBYTE;
TEMPCHAR : chr(TEMPBYTE);
write(OUTFILE,TEMPCHAR);
TEMPBYTE: =0;

end; (*if frac*)
end; (*for I*)

XREALA[ k2] : =1. 0;

XIMAGA[ k2] : =1. 0;

end; (*'DiffDecode*)....................................................................---
procedure Showmessage;
(*Showmessage reads in decoded message*)

var
NEXTCHAR: char;

begin
writeln;
writeln('The message transmitted is..');
assign(OUTFILE, 'MESSAGE. DAT');
reset(OUTFILE);
while not EOF(OUTFILE) do

begin
while not EOLN(OUTFILE) do
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begin
read(OUTFILE ,NEXTCHAR);
write(NEXTCHAR);

end; (*while not EOLN,')
read ln( OUTFILE);
writein;
end; (*while not EOF*)

close(OUTFILE);
end; (*Showmessage*)

begin (*m~ain body*)
GetDMABuffer(MAXBUFFER ,DMAPOINTER,ERR..CODE);

DATAVECTOR :=DMAPQINTER; (*This statement assigns a generic pointer
to a variable of a specific pointer type,
i.e. Ainteger, so that the pointer can be
passed to the d16..ainm routine. *)

new( XREAL);
new( XIMAG);

INVERSE :=false; (*sets forward FFT*)
ERROR :=0;
kx: =0;

PacketSetUp;

(*received message Ioutput file*r)
assign(OUTFILE, 'MESSAGE. DAT');
rewrite(OUTFILE);

(*RECSTAT file shows the computed real and imaginary values of the
received signal and its decoded representation*)
aasign(TESTFILE, 'REOSTAT. DAT');
rewrite( TESTFILE);
(*writeln(TESTFILE, 'Baudlength is' ,kx:5);*)

SYMBOLCOUNT: =0;
TEMPBYTE: =0;

AcquireData; (*AcquireData samples input analog signal*)

for BAUDCOUNT := 1 to NUMBAUDS do
begin

ConvertData;
ComplexFFT (kx, INVERSE,XREAL,XIMAG ?ER~ROR);

writeln(TESTFIL'E,'Baud':1l 'Toner :5 'Real':10-,
'Imaginary':l0,'Mag':lO, Phase':8),*

for J:=k1 to k2 do
begin

MIAGNITUDE:=20*ln(sqrt(sqr(XREALA[ J] )+
sqr(XIMAGA[Jj))) / ln(10);

if (XREALA[J] >= 0) then

70



PHASE:=arctan(XIMAGA[ JI / XREALA[JJ);
if (XREALA[J] < 0) and (XIIIAGA[J] > 0) then

PHASE:=Pi + arctan(XIMAGA[J] / XREALA[J]);
if (XREALA[J] < 0) and (XIMAGA[JJ <= 0) then

PHASE:=arctan(XIMAGA[J] / XREALA[JI) - Pi;

writeln(TESTFILE, 'R' ,BAUDCOUNT: 4,J: 5,
XREALA[JJ: 10: 4,XIMAGA[JJ: 10:4,
MAGNITUDE: 10: 4,PHASE: 8:4);

end;

DiffDecode;

for J:=k1 to k2 do
begin

MAGNITUDE:=sqrt(sqr(XREALA[3] )+sqr(XIMAGA[ 31));
writeln(TESTFILE, D1 ,BAUDCOUNT: 4,J: 5,

XREALA[3] /MAGNITJDE: 10: 4,
XIMAGA[JJ /MAGNITUDE: 10: 4);

end;
end;

wri4teln(OUTFILE ,chr(TEMPBYTE));

close( OUTFILE);
close(TESTFILE);
dispose(XREAL);
dispose(XIMAG);
FreeDMABuffer(MAXBUFFER ,DMAPOINTER,ER..CODE);
Showmessa~e;
(~writeln( Error = ',ERROR,' hit the enter key');readln;*)

end.
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APPENDIX K. RESPONSE
program RESPONSE;
(*RESPONSE outputs the channels phase response, by subtracting
the transmitted phase from the received phase for each tone.
Prior to running, set NUMTONES and KIMINUSl for the proper
baud parameters then compile and run the program*)

var
NAG,PHASE,
XREAL,XIMAG :array[l..256] of real;
KlMINUS1,
NUNTONES,K,
I,BAUD,Kx,Kr :integer;
XMITPHASE,
XR,XI :real;
CODE :char;
XMITDATA,
RECDATA,
CHANNELDATA :text;

begin
assign(XMITDATA,'xmitdatl. 024');
reset(XMITDATA);

assign(RECDATA,'recstat. dat');
reset(RECDATA);

assign(CHANNELDATA,'resplO24. dat');
rewrite(CHANNELDATA);

(*NUNTONES and KIMINUSi should be set for the same baud parameters

as xmitdat*.*** and recstat. dat*)
NUMTONES:=64;
KlMINUSl: =268;

(*get transmitted phase and received phase*)
while not EOF(XMITDATA)do

begin
for I:= to NUMTONES do

begin
readln(XMITDATA,BAUD,Kx,XREAL[ I],XIMAG[ i]);
readln(RECDATA,CODE,BAUD,Kr,XR,XI ,MAG[ I] ,PHASE[ I]);

end;

(*ensure tones match*)

if Kx <> Kr then
begin

writeln('Kx <> Kr');
readln;

end;

(*convert transmitted symbol into phase*)
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for I:= to NUMTONES do
begin

if (XREAL[ I] >= 0.0) and (XIMAG[ I] >= 0.0) then
XMITPHASE- = pi/4;

il (XREAL[I]< 0.0) and (XIMAG[i]>= 0.0) then
XMITPHASE: = 3*pi/4;

if (XREAL(I]>= 0.0) and (XIMAG[I]< 0.0) then
XMITPHASE: = -pi/4;

if (XREAL[I]< 0.0) and (XIMAG[I]< 0.0) then
XMITPHASE: = -3pi/4;

(*subtract transmitted phase from received phase*)
PHASE[ I]: =PHASE[ I] - XMITPHASE;

(*phase differences may jump be 2*pi radiar This helps
but does not work in every case. Output file may have
to be edited to 2*pi jumps*)

if PHASE[I] > 2*pi then
PHASE[il:=PHASE[ I] - 2*pi;

if PHASE[ i] < -2 then
PHASE[i]:=PHASE[i] + 2*pi"

(*actual tone numbers*)

K:=I + KIMINUSl;

writeln(CHANNELDATA,BAUD: 4,K: 4,MAG[ 1]:10: 4,PHASE[ 2. 10: 4);
readin(RECDATA);

end;
end;

clo~e(XMITDATA);
clcbe(RECDATA);
close(CHANNELDATA);

erd.
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APPENDIX L. STATISTICS
program Statistics;
(*to run this program the transmitter program Xmitmes must be run using
MESSAGE.DAT. The file produced, XMITDAT.DAT, must be transferred to the
receiver computer. Then transfer the data between computers using
Xmitmes and Receive. Receive produces the file RECSTAT.DAT. This
program uses XMITDAT. DAT and RECSTAT. DAT to compute the mean and
variance for each quadrant, and the SNR for each quadrant, baud and
the overall SNR for the packet.*)

uses CRT;

type
STATARRAY = array[l..125] of real;

var
Kx,K,NUMBAUDS,
I,J,BAUD,
TONEX,TONER,
QI,Q2,Q3,Q4,
BITERRORI,BITERROR2,BITERROR3,BITERROR4 :integer;

TEMPR,TEMPI,
SNRENDB,SNRIN,
SNROUTDB,SNROUT,
MEANR,MEANI,VARR,VARI:real;

CODE :char;

XD,RD,SD :text;

XR,XI,RR,RI :arrayl..16,1..128] of real;
BTM,BTV,BTQ :array[l..16] of real;
SR1,SR2,SR3,SR4,
SI1,SI2,SI3,S14 : STATARRAY;

STATMATRIC : acray[l..16,1..4,1..5] of real;

procedure Stat(NPTS:integer;
X:STATARRAY;
var XMEAN, XVAR :real);

(*input NPTS:number of points to be used to compute the mean
X:the array of data

output XMEAN:the mean of the data in array X
XVAR:the variance of the data in array X*)

var
SUM:real;
N :integer;
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begin
(*Compute mean*)
SUM:= 0.0;

for N:= 1 to NPTS do
SUM:= SUM + [;

if NPTS > 0 then
XMEAN: = SUM / NPTS

else
XMEAN: =1. Qe-lO;

(*Compute variance*)
SUM: = 0. 0;

for N:=l to NPTS do
SUM: = SUM + sqr(X[ N] - XMEAN);

if NPTS > 1 then
XVAR:= SUM / (NPTS - 1)

else
XVAR:=1. Oe-10;

end; (*eStat*)

begin (*main body*)
repeat

write('Enter baud size. )

readln(Kx);
until (Kx mod 256 = 0) and (Kx >= 256) and (Kx <= 4096);

write('Enter input SNR in DB )
readln(_SNRINDB);
SNRIN := exp(SNRINDB / 10 * ln(10));

K := trunc(Kx / 16);

assign(XD, 'XMITDAT. DAT);
reset(XD);
assign(RD, 'REOSTAT. DAT');
reset(RD);
case Kx of

256:begin assign(SD,'STAT256.DAT'); NUMBAUDS:= 16; end;
512:begin assign(SDI'STAT512.DAT'); NUMBAUDS:= 8; end;

1024: begin assign(-SD, 'STAT1O24. DAT1 ); NUMBAUDS: = 4; end;
2048: begin assign(SD, 'STAT2O43. DAT'); NUMIBAUDS: = 2; end;
4096: begin assign(SD, 'STAT4O96. DAT'); NUMBAUDS: = 1; end;

end; (*case Kx*)
rewrite( SD);

(*read in transmitted- and received data*)
for I:= 1 to NUMBAUDS do

begin
for J:= 1 to K do

readln(RD);
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for J:= 1 to K do
begin

readln(XD, BAUD, TONEX, XR[I,J], XI[I,J]);
readln(RD, CODE, BAUD, TONER, RR[I,J], RIIII,JI);
if TONEX <> TONER then
begin

ci rs cr;
writeln('XMITDAT. DAT and RECSTAT. DAT are in error.')
Halt;

end;
end; (*for 3*)

end; (*for I*)
ciose(XD);
close(RD);

(*decode transmitted data*)
for I:= 1 to NUIIBAUDS do

for J:= 1 to (K - 1) do
begin

TEMPR:= XR[I,J] * XR[I,J+i] + XI[I,JI XI[I,J+i];
TEMPI:= XR[I,J] * XI[I,J+i] - XR[I,J+1] * XI[I,J];
XR[I,J]:= TEMPR - TEMPI;
XI[I,JJ:= TEMPR + TEMPI;

end; (*for 3*)

(*store statistics for each quadrant and baud compute statistics*)
BITERRORi: =0; BITERROR2: =0; BITERROR3: =0; BITERROR4: =0;
for I:= 1 to NUMBAUDS do

begin
Qi: =0; Q2: =0; Q3:=0; Q4:=0;
for J:= Ito (K-i1) do

begin
if (XR[I,J] >= 0.0) and (XI[I,J] > 0.0) then

begin
Q1:=Q1 + 1;
SRi[Qi]:= RR[I,J];
SII[ Q1] : =RI[ I,J];
if RRIII,J] < 0.0 then

BITERROR1:= BITERROR1 + 1;
if RI[I,J] <= 0.0 then

BITERRORi:= BITERRORI. + 1;
end;

if (XR[I,J] < 0.0) and (XI[I,J] > 0.0) then
begin

Q2:=Q2 +- 1;
SR2[Q2]:= RR[I,J];
S12[Q2]:= RI[I,JJ;
If RR[I,J] >= 0..0 then

BITERROR2:= BITERROR2 + 1;
if RI[I,J] <= 0.0 then

BITERROR2:= BITERROR2 + 1;
end;

if (XR(I,J] < 0.0) and (XI[I,3] <= 0.0) then
begin

Q3:=Q3 + 1;
SR3[Q3]:= RR[ 1,J];
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S13[Q3]:= RI[I,J];
if RR[I,J] >= 0.0 then

BITERROR3:= BITERROR3 + 1;
if RI[I,J] > 0.0 then

BITERRQR3:= BITERROR3 + 1;
end;

if (XR[I,J] >= 0.0) and (XI[I,J] <= 0.0) then
begin

Q4:=Q4 + 1;
SR4[Q4]:= RR[I,J];

41 S14[Q4]:= RI[I,J];
if RRIII,J] < 0.0 then

BITERROR4:= BITERROR4 + 1;
if RIf.I,J] > 0.0 then

BITERROR4:= BITERROR4 + 1;
end;

end; (*for J*)

(*STATM.ATRIC is a 3 dimensional array. The first index is the baud
number. The second is the quadrant. The third is the statistics
for each quadrant.
FTATINATRIC[I,J,l] = the mean of the real parts

. .TC[I ,J ,2] = the variance of the real parts
.;..OC[ I ,J, 3] = the mean of the imaginary parts

*' -'RIC[I,J,4] = the variance of the imaginary parts
j..ATRIC[I,J,5] = the number of points transmitted in a given

quadrant*)

BTM[ I] : =0. 0;
BTV[ I]:=0. 0;
BTQ[ I]:=0. 0;
if Qi > 1 then

begin
* Stat(Q1 ,SRl,MEANR,VARR);

Stat(Ql,SIl~rIEANI,VARI);
STATMATRIC[ 1,1,1]:=M'EANR;
STA±LMATRIC[ 1,1,2]:=VARR;
STATMATRIC[I1,1,3] :MEANI;
STATMATRIC[ I, 1,4]:=VARI;
BTM[ I]:=BTi,[ I] + Ql*(abs(MEANR)+abs(HEANI));
BTV[ I]:=BTVf I] + (Q1-l)*(VARR+VARI);
BTQ[ I] : =BTQ[ I) + 2*Ql;

end;
STATMATRIC[ 1, 1,5]: =Ql;

if Q2 > 1 then
begin

Stat(Q2,SR2 ,MEANR,VARR);
Stat(Q2 ,S12,MEANI,VARI);
STATMATRIC[ 1,2, 1]: 4IEANR;
STATMATRIC[ 1,2,2]: =VARR;
STATMATRICf 1,2,3]:=MEANI;
STATMATRIC[ 1,2,4]:=VARI;

BT~j 1: B~f ] +Q2-*(abs(MEANR)+abs(MEANI));
BTV[ I] :BTV[ I] + (Q2-1)*(VARR+VARI);
BTQ[ I]: =BTQ[ I] + 2*Q2;
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end;
STATMATRIG( I ,,5]: =Q2;

if Q3 > I then
begin

Stat( Q3, SR3 ,MEANR ,VARR);
Stat(Q3,SI3,MEANI ,VARI);
STATIIATRIC( 1,3,1]: =MEANR;
STATMATRIC[ 1,3,21:=VARR;
STATMATRIC[ 1,3,3]: =MEANI;
STATMATRIC[ 1,3,4]: VARI;
BTM[ I]: =BTM[ I] + Q3*(abs(MEANR)+abs(IEANI));
BTV[ I] :BTV[ I] + (Q3-1)*(VARR+VARI);
BTQ[I]:=BTQ[I] + 2*Q3;

end;
STATMATRIC[ 1,3,5]:=Q3;

if Q4 > 1 then
begin

Stat( Q4, SR4 ,MEANR ,VARR);
Stat(Q4,SI4,MEANI ,VARI);
STATMATRIC[ 1,4,11:=MEANR;
STATMATRIC[ 1,4,2]:=VARR;
STATMATRIC[ 1,4,3] :1'EANI;
STATMATRIC( 1,4,4] :=VARI;
BTM[ I]: =BTM[ I] + Q4*(abs(M'EANR)+abs(MEANI));
BTV[ I] :BTV[ I] + (Q4-1)*(VARR+VARI);
BTQ[ I]:=BTQ[ I] + 2*Q4;

end;
STATMATRIC[ 1,4,5]:=Q4;

end; (*for I*)

(*output statistics to a file*)
writeln(SD, ** SNRIN_ ' ,SNRIN: 10: 7,' or ,SNRINDB: 10: 7,' DB *~)
writeln(SD);
writeln(SD,' Baud length is ',Kx);

SR2[11]:=0. 0;
SR2[-2] : =0. 0;
SR2[ 3]:=0. 0;
for I:= 1 to NUMBAUDS do

begin
writeln(SD);writeln( SD);writeln( SD); writeln(SD);
writeln(SD,'DFT statistics for baud #I: ',I:-4);writeln(SD);
for J:= 1 to 4 do

begin
(*real output data*)

writeln( SD); writeln( SD);
writeln(SD,'Given the phase is in quadrant ',J);
writeln( SD);
if STATMATRIC[I,J,S] > 1 then

begin
writeln(SD,'Number of points =':35,

STAT MAT RIC[i I ,J, 5]:i10: 5);
writeln(SD,'Mean of real parts = ':35,

STATMATRIC( I,J, 1]-:10: 5);
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writeln(SD,'Variance of real parts = ':35,
STATMATRIC[ I,J,2]: 10: 5);

SNROUT:=sqr(STATMATRIC[I,J,lI) / STATMATRIC[ I,J,2J;
SNROUTDB:= 10.0 * ln(SNROUT) / ln(10.0);
writeln(SD,'SNROUT of real part = ':35,

SNROUT:l0:5,' = ,SNROUTDB:lO:5,' DB');
writeln(SD,'SNROUT/SNRIN of real part = ':35,

(SNROUT / SNRIN):l0:5);

(*imaginary output data*)
writeln( SD);
writeln(SD,'Mean of imag parts = ':35,

STATMATRIC[I,J,3]: 10:5);
writeln(SD,'Variance of imag parts =':35,

STATMATRIC I ,J,4]: 10: 5);
SNROUT:= sqr(STATMATRIC[ I,J,3]) / STATMATRIC[ I,J,4];
SNROUTDB:= 10 *~ ln(SNROUT) / ln(l0. 0);
writeln(SD,t SNROUT of imag part =':35,

SNROUT:10:5,' = ', SNROUTDB:1:5,' DB');-
writeln(SD,t SNROUT/SNRIN of imag part =':35,

(SNROUT / SNRIN):10:5);

end (*if Statmatric*)

else
begin

writeln(SnP,'Quadrant has less then 2 statistic
points ');

writeln(SD,'and is not used in the overall statics.');
end; (*else*)

end; (*for J*)

writeln( SD); writeln( SD); writeln( SD);
writeln(SD, Overall (Real +- Imag) statistics for Baud #7:',1:4);

SNROUT:= sqr(BTM[I]/BTQ[I]) /(BTV[I]/(BTQ[I] -1));

SNROUTDB:= 10 * ln(SNROUT) / n(lO.0);
writeln(SD,'Overall Baud SNROUT = ':35,SNROUT:l0:5,'

SNROUTDB: 10:5,? DB');
writeln(SD,'Overall baud gain (SNROUT / SNRIN) = ':35,

(SNROUT/SNRIN): 10: 5);

(*store baud means and variances*)
SR2[11: = SR2[ 11 + BTN( I];
SR2[ 21: =SR2[ 2] + BTY[ I]-~;
SR2[ 3]: =SR2[ 3) + BTQ[ I]-;

end; (*for I*)
writeln(SD); writeln(SD); writeln(SD); writeln(SD);
writeln(SD,'*** TOTAL OVER ALL ',NUMBAUDS,' BAUDS ABOVE BAUD ~

Kx, ' ***c*'
writeln(SD); writeln( SD);
SN\ROUT:=sqr(SR2[ 1] /SR2[ 31) / -(SR2[ 2] / (SR2f 3) -1));

SNROUTB:=10 *~ ln(SNROUT) / ln(lO. 0);-
writeln(SD,'Overall SNROUT= ':35,SNROUT: 10:5,'

SNROUTDB: 10: 5,' DB');
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writeln('Overall SNROUT = ':35tSNRQUT:10:5,'
SNROUTDB:10:5, DB );

writeln(SD,'Overall gain (SNROUT / SNRIN) = ':35,
(SNRQUT/SNRIN): 10: 5);

writeln(SD);writeln(SD);
writeln(SD, 'Total possible statistical points ',(Kx/8-2)*NUMBAUDS: 3:0,

'. Actual number of statistical points ',SR2[3]:3:0);

writeln(SD);
writeln(SD, 'BIT ERRORSt :35);
writeln(SD, 'Quadrant I = ':30,BITERRORl);
writeln(SD, 2 = ':30,BITERRQR2);
writeln(SD, :3 = ':30,BITERROR3);
writeln(SD,'4 = ':30,BITERROR4);
BITERRORl:= BITERRORI + BITERRQR2 + BITERRQR3 + BITERROR4;
writeln(SD,'Total Bit errors = ':35, BITERRORi);
writeln('Total Bit errors =':30, BITERRORl);
close(SD);

end. (*main body*)
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